Systematic comparison of the influence of different data preprocessing methods on the performance of gait classifications using machine learning

dc.contributor.authorBurdack, Johannes
dc.contributor.authorHorst, Fabian
dc.contributor.authorGiesselbach, Sven
dc.contributor.authorHassan, Ibrahim
dc.contributor.authorDaffner, Sabrina
dc.contributor.authorSchöllhorn, Wolfgang I.
dc.date.accessioned2020-10-27T08:46:12Z
dc.date.available2020-10-27T08:46:12Z
dc.date.issued2020
dc.description.abstractHuman movements are characterized by highly non-linear and multi-dimensional interactions within the motor system. Therefore, the future of human movement analysis requires procedures that enhance the classification of movement patterns into relevant groups and support practitioners in their decisions. In this regard, the use of data-driven techniques seems to be particularly suitable to generate classification models. Recently, an increasing emphasis on machine-learning applications has led to a significant contribution, e.g., in increasing the classification performance. In order to ensure the generalizability of the machine-learning models, different data preprocessing steps are usually carried out to process the measured raw data before the classifications. In the past, various methods have been used for each of these preprocessing steps. However, there are hardly any standard procedures or rather systematic comparisons of these different methods and their impact on the classification performance. Therefore, the aim of this analysis is to compare different combinations of commonly applied data preprocessing steps and test their effects on the classification performance of gait patterns. A publicly available dataset on intra-individual changes of gait patterns was used for this analysis. Forty-two healthy participants performed 6 sessions of 15 gait trials for 1 day. For each trial, two force plates recorded the three-dimensional ground reaction forces (GRFs). The data was preprocessed with the following steps: GRF filtering, time derivative, time normalization, data reduction, weight normalization and data scaling. Subsequently, combinations of all methods from each preprocessing step were analyzed by comparing their prediction performance in a six-session classification using Support Vector Machines, Random Forest Classifiers, Multi-Layer Perceptrons, and Convolutional Neural Networks. The results indicate that filtering GRF data and a supervised data reduction (e.g., using Principal Components Analysis) lead to increased prediction performance of the machine-learning classifiers. Interestingly, the weight normalization and the number of data points (above a certain minimum) in the time normalization does not have a substantial effect. In conclusion, the present results provide first domain-specific recommendations for commonly applied data preprocessing methods and might help to build more comparable and more robust classification models based on machine learning that are suitable for a practical application.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizin Mainzde
dc.identifier.doihttp://doi.org/10.25358/openscience-5261
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/5265
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc796 Sportde_DE
dc.subject.ddc796 Athletic and outdoor sports and gamesen_GB
dc.titleSystematic comparison of the influence of different data preprocessing methods on the performance of gait classifications using machine learningen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleFrontiers in Bioengineering and Biotechnologyde
jgu.journal.volume8de
jgu.organisation.departmentFB 02 Sozialwiss., Medien u. Sportde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7910
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativeArt. 260de
jgu.publisher.doi10.3389/fbioe.2020.00260
jgu.publisher.issn2296-4185de
jgu.publisher.nameFrontiers Mediade
jgu.publisher.placeLausannede
jgu.publisher.urihttps://doi.org/10.3389/fbioe.2020.00260de
jgu.publisher.year2020
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode796de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
burdack_johannes-systematic_com-20201027094017196.pdf
Size:
4.93 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: