Skyrmion pinning energetics in thin film systems

dc.contributor.authorGruber, Raphael
dc.contributor.authorZázvorka, Jakub
dc.contributor.authorBrems, Maarten A.
dc.contributor.authorRodrigues, Davi R.
dc.contributor.authorDohi, Takaaki
dc.contributor.authorKerber, Nico
dc.contributor.authorSeng, Boris
dc.contributor.authorVafaee, Mehran
dc.contributor.authorEverschor-Sitte, Karin
dc.contributor.authorVirnau, Peter
dc.contributor.authorKläui, Mathias
dc.date.accessioned2022-08-01T09:21:27Z
dc.date.available2022-08-01T09:21:27Z
dc.date.issued2022
dc.description.abstractSkyrmions, topological spin textures, can be pinned by defects present in the material that hosts them, influencing their motion. Here, Gruber et al show that the skyrmions are pinned at their boundary where the finite size of the skyrmions governs their pinning, and they demonstrate that certain pinning sites can switched on and off in-situ. A key issue for skyrmion dynamics and devices are pinning effects present in real systems. While posing a challenge for the realization of conventional skyrmionics devices, exploiting pinning effects can enable non-conventional computing approaches if the details of the pinning in real samples are quantified and understood. We demonstrate that using thermal skyrmion dynamics, we can characterize the pinning of a sample and we ascertain the spatially resolved energy landscape. To understand the mechanism of the pinning, we probe the strong skyrmion size and shape dependence of the pinning. Magnetic microscopy imaging demonstrates that in contrast to findings in previous investigations, for large skyrmions the pinning originates at the skyrmion boundary and not at its core. The boundary pinning is strongly influenced by the very complex pinning energy landscape that goes beyond the conventional effective rigid quasi-particle description. This gives rise to complex skyrmion shape distortions and allows for dynamic switching of pinning sites and flexible tuning of the pinning.en_GB
dc.description.sponsorshipGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491381577
dc.identifier.doihttp://doi.org/10.25358/openscience-7470
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7484
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleSkyrmion pinning energetics in thin film systemsen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleNature Communicationsde
jgu.journal.volume13de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative3144de
jgu.publisher.doi10.1038/s41467-022-30743-4de
jgu.publisher.issn2041-1723de
jgu.publisher.nameNature Publishing Group UKde
jgu.publisher.placeLondonde
jgu.publisher.year2022
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode530de
jgu.subject.dfgNaturwissenschaften
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
skyrmion_pinning_energetics_i-20220728143110725.pdf
Size:
1.81 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections