High-throughput synthesis of CeO2 nanoparticles for transparent nanocomposites repelling Pseudomonas aeruginosa biofilms

dc.contributor.authorSarif, Massih
dc.contributor.authorJegel, Olga
dc.contributor.authorGazanis, Athanasios
dc.contributor.authorHartmann, Jens
dc.contributor.authorPlana-Ruiz, Sergi
dc.contributor.authorHilgert, Jan
dc.contributor.authorFrerichs, Hajo
dc.contributor.authorViel, Melanie
dc.contributor.authorPanthöfer, Martin
dc.contributor.authorKolb, Ute
dc.contributor.authorTahir, Muhammad Nawaz
dc.contributor.authorSchemberg, Jörg
dc.contributor.authorKappl, Michael
dc.contributor.authorHeermann, Ralf
dc.contributor.authorTremel, Wolfgang
dc.date.accessioned2022-10-31T09:21:55Z
dc.date.available2022-10-31T09:21:55Z
dc.date.issued2022
dc.description.abstractPreventing bacteria from adhering to material surfaces is an important technical problem and a major cause of infection. One of nature’s defense strategies against bacterial colonization is based on the biohalogenation of signal substances that interfere with bacterial communication. Biohalogenation is catalyzed by haloperoxidases, a class of metal-dependent enzymes whose activity can be mimicked by ceria nanoparticles. Transparent CeO2/polycarbonate surfaces that prevent adhesion, proliferation, and spread of Pseudomonas aeruginosa PA14 were manufactured. Large amounts of monodisperse CeO2 nanoparticles were synthesized in segmented flow using a high-throughput microfluidic benchtop system using water/benzyl alcohol mixtures and oleylamine as capping agent. This reduced the reaction time for nanoceria by more than one order of magnitude compared to conventional batch methods. Ceria nanoparticles prepared by segmented flow showed high catalytic activity in halogenation reactions, which makes them highly efficient functional mimics of haloperoxidase enzymes. Haloperoxidases are used in nature by macroalgae to prevent formation of biofilms via halogenation of signaling compounds that interfere with bacterial cell–cell communication (“quorum sensing”). CeO2/polycarbonate nanocomposites were prepared by dip-coating plasma-treated polycarbonate panels in CeO2 dispersions. These showed a reduction in bacterial biofilm formation of up to 85% using P. aeruginosa PA14 as model organism. Besides biofilm formation, also the production of the virulence factor pyocyanin in is under control of the entire quorum sensing systems P. aeruginosa. CeO2/PC showed a decrease of up to 55% in pyocyanin production, whereas no effect on bacterial growth in liquid culture was observed. This indicates that CeO2 nanoparticles affect quorum sensing and inhibit biofilm formation in a non-biocidal manner.en_GB
dc.description.sponsorshipGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491381577de
dc.identifier.doihttp://doi.org/10.25358/openscience-8168
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8183
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc570 Biowissenschaftende_DE
dc.subject.ddc570 Life sciencesen_GB
dc.titleHigh-throughput synthesis of CeO2 nanoparticles for transparent nanocomposites repelling Pseudomonas aeruginosa biofilmsde_DE
dc.typeZeitschriftenaufsatzde
jgu.journal.titleScientific reportsde
jgu.journal.volume12de
jgu.organisation.departmentFB 10 Biologiede
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7970
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative3935de
jgu.publisher.doi10.1038/s41598-022-07833-wde
jgu.publisher.issn2045-2322de
jgu.publisher.nameSpringer Naturede
jgu.publisher.placeLondonde
jgu.publisher.year2022
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode570de
jgu.subject.dfgNaturwissenschaftende
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
highthroughput_synthesis_of_c-20221025103939693.pdf
Size:
2.99 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections