Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning

dc.contributor.authorWinkelmeier, Laurens
dc.contributor.authorFilosa, Carla
dc.contributor.authorHartig, Renée
dc.contributor.authorScheller, Max
dc.contributor.authorSack, Markus
dc.contributor.authorReinwald, Jonathan R.
dc.contributor.authorBecker, Robert
dc.contributor.authorWolf, David
dc.contributor.authorGerchen, Martin Fungisai
dc.contributor.authorSartorius, Alexander
dc.contributor.authorMeyer-Lindenberg, Andreas
dc.contributor.authorFahr-Weber, Wolfgang
dc.contributor.authorClemm von Hohenberg, Christian
dc.contributor.authorRusso, Eleonora
dc.contributor.authorKelsch, Wolfgang
dc.date.accessioned2023-02-10T09:37:14Z
dc.date.available2023-02-10T09:37:14Z
dc.date.issued2022
dc.description.abstractIdentifying the circuits responsible for cognition and understanding their embedded computations is a challenge for neuroscience. We establish here a hierarchical cross-scale approach, from behavioral modeling and fMRI in task-performing mice to cellular recordings, in order to disentangle local network contributions to olfactory reinforcement learning. At mesoscale, fMRI identifies a functional olfactory-striatal network interacting dynamically with higher-order cortices. While primary olfactory cortices respectively contribute only some value components, the downstream olfactory tubercle of the ventral striatum expresses comprehensively reward prediction, its dynamic updating, and prediction error components. In the tubercle, recordings reveal two underlying neuronal populations with non-redundant reward prediction coding schemes. One population collectively produces stabilized predictions as distributed activity across neurons; in the other, neurons encode value individually and dynamically integrate the recent history of uncertain outcomes. These findings validate a cross-scale approach to mechanistic investigations of higher cognitive functions in rodents.en_GB
dc.description.sponsorshipGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491381577de
dc.identifier.doihttp://doi.org/10.25358/openscience-8796
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8812
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.titleStriatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learningen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleNature Communicationsde
jgu.journal.volume13de
jgu.organisation.departmentFB 04 Medizinde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative3305de
jgu.publisher.doi10.1038/s41467-022-30978-1de
jgu.publisher.issn2041-1723de
jgu.publisher.nameNature Publishing Groupde
jgu.publisher.placeLondonde
jgu.publisher.year2022
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610de
jgu.subject.dfgMultidisciplinaryde
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
striatal_hub_of_dynamic_and_s-20230210102732794.pdf
Size:
4.85 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections