Interaction of the mitochondrial calcium/proton exchanger TMBIM5 with MICU1
Loading...
Date issued
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Reuse License
Description of rights: CC-BY-4.0
Abstract
Ion transport within mitochondria influences their structure, energy production, and cell death regulation. TMBIM5, a conserved calcium/proton exchanger in the inner mitochondrial membrane, contributes to mitochondrial structure, ATP synthesis, and apoptosis regulation. The relationship of TMBIM5 with the mitochondrial calcium uniporter complex formed by MCU, MICU1-3, and EMRE remains undefined. We generated Tmbim5-deficient Drosophila that exhibit disrupted cristae architecture, premature mitochondrial permeability transition pore opening, reduced calcium uptake, and mitochondrial swelling – resulting in impaired mobility and shortened lifespan. Crossing these with flies lacking mitochondrial calcium uniporter complex proteins was generally detrimental, but partial MICU1 depletion ameliorated the Tmbim5-deficiency phenotype. In human cells, MICU1 rescues morphological defects in TMBIM5-knockout mitochondria, while TMBIM5 overexpression exacerbates size reduction in MICU1-knockout mitochondria. Both proteins demonstrated opposing effects on submitochondrial localization and coexisted in the same macromolecular complex. Our findings establish a functional interplay between TMBIM5 and MICU1 in maintaining mitochondrial integrity, with implications for understanding calcium homeostasis mechanisms.
