Individual skyrmion manipulation by local magnetic field gradients

dc.contributor.authorCasiraghi, Arianna
dc.contributor.authorCorte-León, Héctor
dc.contributor.authorVafaee, Mehran
dc.contributor.authorGarcia-Sanchez, Felipe
dc.contributor.authorDurin, Gianfranco
dc.contributor.authorPasquale, Massimo
dc.contributor.authorJakob, Gerhard
dc.contributor.authorKläui, Mathias
dc.contributor.authorKazakova, Olga
dc.date.accessioned2020-01-14T10:43:53Z
dc.date.available2020-01-14T11:43:53Z
dc.date.issued2019
dc.description.abstractMagnetic skyrmions are topologically protected spin textures, stabilised in systems with strong Dzyaloshinskii-Moriya interaction (DMI). Several studies have shown that electrical currents can move skyrmions efficiently through spin-orbit torques. While promising for technological applications, current-driven skyrmion motion is intrinsically collective and accompanied by undesired heating effects. Here we demonstrate a new approach to control individual skyrmion positions precisely, which relies on the magnetic interaction between sample and a magnetic force microscopy (MFM) probe. We investigate perpendicularly magnetised X/CoFeB/MgO multilayers, where for X = W or Pt the DMI is sufficiently strong to allow for skyrmion nucleation in an applied field. We show that these skyrmions can be manipulated individually through the local field gradient generated by the scanning MFM probe with an unprecedented level of accuracy. Furthermore, we show that the probe stray field can assist skyrmion nucleation. Our proof-of-concepts results pave the way towards achieving current-free skyrmion control.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-248
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/250
dc.identifier.urnurn:nbn:de:hebis:77-publ-594977
dc.language.isoeng
dc.rightsInC-1.0de_DE
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleIndividual skyrmion manipulation by local magnetic field gradientsen_GB
dc.typeZeitschriftenaufsatzde_DE
jgu.journal.titleCommunications Physics
jgu.journal.volume2
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternativeArt. 145
jgu.publisher.doi10.1038/s42005-019-0242-5
jgu.publisher.issn2399-3650
jgu.publisher.nameSpringer Nature
jgu.publisher.placeLondon
jgu.publisher.urihttp://dx.doi.org/10.1038/s42005-019-0242-5
jgu.publisher.year2019
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode530
jgu.type.dinitypeArticle
jgu.type.resourceText
jgu.type.versionAccepted versionen_GB
opus.affiliatedJakob, Gerhard
opus.affiliatedKläui, Mathias
opus.date.accessioned2020-01-14T10:43:53Z
opus.date.available2020-01-14T11:43:53
opus.date.modified2020-02-03T10:36:41Z
opus.identifier.opusid59497
opus.institute.number0801
opus.metadataonlyfalse
opus.organisation.stringFB 08: Physik, Mathematik und Informatik: Institut für Physikde_DE
opus.subject.dfgcode00-000
opus.type.contenttypeForschungsberichtde_DE
opus.type.contenttypeResearch Reporten_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
59497.pdf
Size:
7.32 MB
Format:
Adobe Portable Document Format