Polynomials under Ornstein–Uhlenbeck noise and an application to inference in stochastic Hodgkin–Huxley systems

dc.contributor.authorHöpfner, Reinhard
dc.date.accessioned2021-05-11T09:14:49Z
dc.date.available2021-05-11T09:14:49Z
dc.date.issued2021
dc.description.abstractWe discuss estimation problems where a polynomial s→∑ℓi=0ϑisi with strictly positive leading coefficient is observed under Ornstein–Uhlenbeck noise over a long time interval. We prove local asymptotic normality (LAN) and specify asymptotically efficient estimators. We apply this to the following problem: feeding noise dYt into the classical (deterministic) Hodgkin–Huxley model in neuroscience, with Yt=ϑt+Xt and X some Ornstein–Uhlenbeck process with backdriving force τ, we have asymptotically efficient estimators for the pair (ϑ,τ); based on observation of the membrane potential up to time n, the estimate for ϑ converges at rate n3−−−√.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-5803
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/5812
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc510 Mathematikde_DE
dc.subject.ddc510 Mathematicsen_GB
dc.titlePolynomials under Ornstein–Uhlenbeck noise and an application to inference in stochastic Hodgkin–Huxley systemsen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleStatistical inference for stochastic processesde
jgu.journal.volume24de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end59de
jgu.pages.start35de
jgu.publisher.doi10.1007/s11203-020-09226-0
jgu.publisher.issn1572-9311de
jgu.publisher.nameSpringer Science + Business Media B.V.de
jgu.publisher.placeDordrechtde
jgu.publisher.urihttps://doi.org/10.1007/s11203-020-09226-0de
jgu.publisher.year2021
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode510de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
höpfner_reinhard-polynomials_un-20210421200155509.pdf
Size:
525.45 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: