In 1 day(s), 7 hour(s) and 8 minute(s): Am Freitag, den 22.08.2025 von 15:00 bis voraussichtlich 17 Uhr wird Gutenberg Open Science wegen eines Updates nicht zur Verfügung stehen. Wir bitten die Unannehmlichkeit zu entschuldigen.
 

Polynomials under Ornstein–Uhlenbeck noise and an application to inference in stochastic Hodgkin–Huxley systems

dc.contributor.authorHöpfner, Reinhard
dc.date.accessioned2021-05-11T09:14:49Z
dc.date.available2021-05-11T09:14:49Z
dc.date.issued2021
dc.description.abstractWe discuss estimation problems where a polynomial s→∑ℓi=0ϑisi with strictly positive leading coefficient is observed under Ornstein–Uhlenbeck noise over a long time interval. We prove local asymptotic normality (LAN) and specify asymptotically efficient estimators. We apply this to the following problem: feeding noise dYt into the classical (deterministic) Hodgkin–Huxley model in neuroscience, with Yt=ϑt+Xt and X some Ornstein–Uhlenbeck process with backdriving force τ, we have asymptotically efficient estimators for the pair (ϑ,τ); based on observation of the membrane potential up to time n, the estimate for ϑ converges at rate n3−−−√.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-5803
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/5812
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc510 Mathematikde_DE
dc.subject.ddc510 Mathematicsen_GB
dc.titlePolynomials under Ornstein–Uhlenbeck noise and an application to inference in stochastic Hodgkin–Huxley systemsen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleStatistical inference for stochastic processesde
jgu.journal.volume24de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end59de
jgu.pages.start35de
jgu.publisher.doi10.1007/s11203-020-09226-0
jgu.publisher.issn1572-9311de
jgu.publisher.nameSpringer Science + Business Media B.V.de
jgu.publisher.placeDordrechtde
jgu.publisher.urihttps://doi.org/10.1007/s11203-020-09226-0de
jgu.publisher.year2021
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode510de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
höpfner_reinhard-polynomials_un-20210421200155509.pdf
Size:
525.45 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: