Comprehensible knowledge base extraction for learning agents : practical challenges and applications in games

dc.contributor.advisorKern-Isberner, Gabriele
dc.contributor.authorApeldoorn, Daan
dc.date.accessioned2023-11-06T10:57:43Z
dc.date.available2023-11-06T10:57:43Z
dc.date.issued2023
dc.description.abstractThe need for artificial intelligence systems that are not only capable of mastering complicated tasks but also of explaining their decisions has massively gained attention over the last years. This also seems to offer opportunities for further interconnecting different approaches to artificial intelligence, such as machine learning and knowledge representation. This work considers the task of learning knowledge bases from agent behavior, with a focus on human-readability, comprehensibility and applications in games. In this context, it will be presented how knowledge can be organized and processed on multiple levels of abstraction, allowing for efficient reasoning and revision. It will be investigated how learning agents can benefit from incorporating the approaches into their learning processes. Examples and applications are provided, e.g., in the context of general video game playing. The most essential approaches are implemented in the InteKRator toolbox and show potential for being applied in other domains (e.g., in medical informatics).en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-9303
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/9321
dc.language.isoengde
dc.relation.ispartofseriesWissenschaftliche Beiträge über künstliche Intelligenz ; 1
dc.rightsInC-1.0*
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/*
dc.subject.ddc004 Informatikde_DE
dc.subject.ddc004 Data processingen_GB
dc.titleComprehensible knowledge base extraction for learning agents : practical challenges and applications in gamesen_GB
dc.typeMonographiede
jgu.description.extent194 Seitende
jgu.notes.publicZugl.: Dortmund, Univ., Diss.de
jgu.organisation.departmentFB 04 Medizinde
jgu.organisation.departmentExterne Einrichtungende
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.number0000
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.publisher.isbn978-3-95886-490-0de
jgu.publisher.nameVerlag Mainzde
jgu.publisher.placeAachende
jgu.publisher.year2023
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode004de
jgu.type.dinitypeMonographen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
comprehensible_knowledge_base-20231025150805451.pdf
Size:
11.11 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.98 KB
Format:
Item-specific license agreed upon to submission
Description: