Factorization method and irregular inclusions in electrical impedance tomography

dc.contributor.authorGebauer, Bastian
dc.contributor.authorHyvönen, Nuutti
dc.date.accessioned2008-11-19T15:42:24Z
dc.date.available2008-11-19T16:42:24Z
dc.date.issued2007
dc.description.abstractIn electrical impedance tomography, one tries to recover the conductivity inside a physical body from boundary measurements of current and voltage. In many practically important situations, the investigated object has known background conductivity but it is contaminated by inhomogeneities. The factorization method of Andreas Kirsch provides a tool for locating such inclusions. Earlier, it has been shown that under suitable regularity conditions positive (or negative) inhomogeneities can be characterized by the factorization technique if the conductivity or one of its higher normal derivatives jumps on the boundaries of the inclusions. In this work, we use a monotonicity argument to generalize these results: We show that the factorization method provides a characterization of an open inclusion (modulo its boundary) if each point inside the inhomogeneity has an open neighbourhood where the perturbation of the conductivity is strictly positive (or negative) definite. In particular, we do not assume any regularity of the inclusion boundary or set any conditions on the behaviour of the perturbed conductivity at the inclusion boundary. Our theoretical findings are verified by two-dimensional numerical experiments.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-313
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/315
dc.identifier.urnurn:nbn:de:hebis:77-17968
dc.language.isoeng
dc.rightsInC-1.0de_DE
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510 Mathematikde_DE
dc.subject.ddc510 Mathematicsen_GB
dc.titleFactorization method and irregular inclusions in electrical impedance tomographyen_GB
dc.typeZeitschriftenaufsatzde_DE
jgu.journal.titleInverse problems
jgu.journal.volume23
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end2170
jgu.pages.start2159
jgu.publisher.issn1361-6420
jgu.publisher.issn0266-5611
jgu.publisher.placeBristol u.a.
jgu.publisher.year2007
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode510
jgu.type.dinitypeArticle
jgu.type.resourceText
jgu.type.versionPublished versionen_GB
opus.affiliatedGebauer, Bastian
opus.date.accessioned2008-11-19T15:42:24Z
opus.date.available2008-11-19T16:42:24
opus.date.modified2008-11-25T10:21:48Z
opus.identifier.opusid1796
opus.institute.number0804
opus.metadataonlyfalse
opus.organisation.stringFB 08: Physik, Mathematik und Informatik: Institut für Mathematikde_DE
opus.subject.dfgcode00-000
opus.subject.otherInverse problems for PDE, electrical impedance tomography, factorization methoden_GB
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1796.pdf
Size:
512.84 KB
Format:
Adobe Portable Document Format