Meeting in the dark room : Bayesian rational analysis and hierarchical predictive coding

dc.contributor.authorFink, Sascha Benjamin
dc.contributor.authorZednik, Carlos
dc.date.accessioned2017-06-01T10:35:17Z
dc.date.available2017-06-01T12:35:17Z
dc.date.issued2017
dc.description.abstractAt least two distinct modeling frameworks contribute to the view that mind and brain are Bayesian: Bayesian Rational Analysis (BRA) and Hierarchical Predictive Coding (HPC). What is the relative contribution of each, and how exactly do they relate? In order to answer this question, we compare the way in which these two modeling frameworks address different levels of analysis within Marr’s tripartite hierarchy for explanation in cognitive science. Whereas BRA answers questions at the computational level only, many HPC-theorists answer questions at the computational, algorithmic, and implementational levels simultaneously. Given that all three levels of analysis need to be addressed in order to explain a behavioral or cognitive phenomenon, HPC seems to deliver more complete explanations. Nevertheless, BRA is well-suited for providing a solution to the dark room problem, a major theoretical obstacle for HPC. A combination of the two approaches also combines the benefits of an embodied-externalistic approach to resolving the dark room problem with the idea of a persisting evidentiary border beyond which matters are out of cognitive reach. For this reason, the development of explanations spanning all three Marrian levels within the general Bayesian approach will require combining the BRA and HPC modeling frameworks.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-637
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/639
dc.identifier.urnurn:nbn:de:hebis:77-publ-566569
dc.language.isoeng
dc.rightsCC-BY-ND-4.0de_DE
dc.rights.urihttps://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc100 Philosophiede_DE
dc.subject.ddc100 Philosophyen_GB
dc.titleMeeting in the dark room : Bayesian rational analysis and hierarchical predictive codingen_GB
dc.typeBuchbeitragde_DE
jgu.book.editorMetzinger, Thomas
jgu.book.titlePhilosophy and predictive processing
jgu.organisation.departmentFB 05 Philosophie und Philologie
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7920
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end238
jgu.pages.start226
jgu.publisher.doi10.15502/9783958573154
jgu.publisher.nameMIND Group
jgu.publisher.placeFrankfurt am Main
jgu.publisher.urihttp://dx.doi.org/10.15502/9783958573154
jgu.publisher.year2017
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode100
jgu.type.dinitypeBookPart
jgu.type.resourceText
jgu.type.versionPublished versionen_GB
opus.date.accessioned2017-06-01T10:35:17Z
opus.date.available2017-06-01T12:35:17
opus.date.modified2017-06-02T08:12:35Z
opus.identifier.opusid56656
opus.institute.number0508
opus.metadataonlyfalse
opus.organisation.stringFB 05: Philosophie und Philologie: Philosophisches Seminarde_DE
opus.relation.ispartofcollectionPhilosophy and predictive processingde_DE
opus.subject.dfgcode00-000
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
56656.pdf
Size:
301.91 KB
Format:
Adobe Portable Document Format