Skyrmion lattice order controlled by confinement geometry

dc.contributor.authorGruber, Raphael
dc.contributor.authorRothörl, Jan
dc.contributor.authorFröhlich, Simon M.
dc.contributor.authorBrems, Maarten A.
dc.contributor.authorKammerbauer, Fabian
dc.contributor.authorSyskaki, Maria-Andromachi
dc.contributor.authorJefremovas, Elizabeth M.
dc.contributor.authorKrishnia, Sachin
dc.contributor.authorSudbø, Asle
dc.contributor.authorVirnau, Peter
dc.contributor.authorKläui, Mathias
dc.date.accessioned2025-12-04T08:58:38Z
dc.date.issued2025
dc.description.abstractMagnetic skyrmions forming two-dimensional (2D) lattices provide a versatile platform for investigating phase transitions predicted by Kosterlitz–Thouless–Halperin–Nelson–Young theory. While 2D melting in skyrmion systems has been demonstrated, achieving controlled ordering in skyrmion lattices remains challenging due to pinning effects from a non-uniform energy landscape, which often results in polycrystalline structures. Skyrmions in thin films, however, offer thermal diffusion with high tunability and can be directly imaged via Kerr microscopy, enabling real-time observation of their dynamics. To regulate lattice order in such flexible systems, we introduce geometric confinements of varying shapes. Combining Kerr microscopy experiments with Thiele model simulations, we demonstrate that confinement geometry critically influences lattice order. Specifically, hexagonal confinements commensurate with the skyrmion lattice stabilize monodomain hexagonal ordering, while incommensurate geometries induce domain formation and reduce overall order. Understanding these boundary-driven effects is essential for advancing the study of 2D phase behavior and for the design of skyrmion-based spintronic applications, ranging from memory devices to unconventional computing architectures.en
dc.description.sponsorship(Deutsche Forschungsgemeinschaft|403502522, Deutsche Forschungsgemeinschaft|TRR173/2, Ministeriums für Wissenschaft, Weiterbildung und Kultur, Rheinland-Pfalz|TopDyn, Horizon 2020 Framework Programme|856538, Horizon 2020 Framework Programme|860060, Horizon 2020 Framework Programme|101119608, Norges Forskningsråd|262633, Norges Forskningsråd|323766)
dc.identifier.doihttps://doi.org/10.25358/openscience-13793
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/13814
dc.language.isoeng
dc.rightsInC-1.0
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc530 Physikde
dc.subject.ddc530 Physicsen
dc.titleSkyrmion lattice order controlled by confinement geometryen
dc.typeZeitschriftenaufsatz
elements.depositor.primary-group-descriptorFachbereich Physik, Mathematik und Informatik
elements.object.id291888
elements.object.labels02 Physical Sciences
elements.object.labels09 Engineering
elements.object.labels10 Technology
elements.object.labelsApplied Physics
elements.object.labels40 Engineering
elements.object.labels51 Physical sciences
elements.object.typejournal-article
jgu.identifier.uuid277454b1-dd9b-4d65-aaee-f19aa96810ee
jgu.journal.issue21
jgu.journal.titleApplied physics letters
jgu.journal.volume127
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative212403
jgu.publisher.doi10.1063/5.0299901
jgu.publisher.eissn1077-3118
jgu.publisher.issn0003-6951
jgu.publisher.nameAmerican Inst. of Physics
jgu.publisher.placeMelville, NY
jgu.publisher.year2025
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode530
jgu.type.dinitypeArticleen_GB
jgu.type.resourceText
jgu.type.versionAccepted version

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
skyrmion_lattice_order_contro-20251204095838490241.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format
Description:
Accepted version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
5.1 KB
Format:
Plain Text
Description: