Giant spin Seebeck effect through an interface organic semiconductor

dc.contributor.authorKalappattil, Vijaysankar
dc.contributor.authorGeng, Rugang
dc.contributor.authorDas, Raja
dc.contributor.authorPham, Minh
dc.contributor.authorLuong, Hoang
dc.contributor.authorNguyen, Toa
dc.contributor.authorPopescu, Adrian
dc.contributor.authorWoods, Lilia M.
dc.contributor.authorKläui, Mathias
dc.contributor.authorSrikanth, Hariharan
dc.contributor.authorPhan, Manh-Huong
dc.date.accessioned2021-12-06T09:25:26Z
dc.date.available2021-12-06T09:25:26Z
dc.date.issued2020
dc.description.abstractInterfacing an organic semiconductor C-60 with a non-magnetic metallic thin film (Cu or Pt) has created a novel heterostructure that is ferromagnetic at ambient temperature, while its interface with a magnetic metal (Fe or Co) can tune the anisotropic magnetic surface property of the material. Here, we demonstrate that sandwiching C-60 in between a magnetic insulator (Y3Fe5O12:YIG) and a non-magnetic, strong spin-orbit metal (Pt) promotes highly efficient spin current transport via the thermally driven spin Seebeck effect (SSE). Experiments and first principles calculations consistently show that the presence of C-60 reduces significantly the conductivity mismatch between YIG and Pt and the surface perpendicular magnetic anisotropy of YIG, giving rise to enhanced spin mixing conductance across YIG/C-60/Pt interfaces. As a result, a 600% increase in the SSE voltage (V-LSSE) has been realized in YIG/C-60/Pt relative to YIG/Pt. Temperature-dependent SSE voltage measurements on YIG/C-60/Pt with varying C-60 layer thicknesses also show an exponential increase in V-LSSE at low temperatures below 200 K, resembling the temperature evolution of spin diffusion length of C-60. Our study emphasizes the important roles of the magnetic anisotropy and the spin diffusion length of the intermediate layer in the SSE in YIG/C-60/Pt structures, providing a new pathway for developing novel spin-caloric materials.en_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-5325
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/5329
dc.language.isoengde
dc.rightsInC-1.0*
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleGiant spin Seebeck effect through an interface organic semiconductoren_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue5de
jgu.journal.titleMaterials Horizonsde
jgu.journal.volume7de
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end1420de
jgu.pages.start1413de
jgu.publisher.doi10.1039/C9MH01498E
jgu.publisher.issn2051-6347de
jgu.publisher.nameRSC Publ.de
jgu.publisher.placeCambridgede
jgu.publisher.urihttps://doi.org/10.1039/C9MH01498Ede
jgu.publisher.year2020
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode530de
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionAccepted versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
kalappattil_v-giant_spin_see-20201110134920739.pdf
Size:
923.31 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: