Giant spin Seebeck effect through an interface organic semiconductor
dc.contributor.author | Kalappattil, Vijaysankar | |
dc.contributor.author | Geng, Rugang | |
dc.contributor.author | Das, Raja | |
dc.contributor.author | Pham, Minh | |
dc.contributor.author | Luong, Hoang | |
dc.contributor.author | Nguyen, Toa | |
dc.contributor.author | Popescu, Adrian | |
dc.contributor.author | Woods, Lilia M. | |
dc.contributor.author | Kläui, Mathias | |
dc.contributor.author | Srikanth, Hariharan | |
dc.contributor.author | Phan, Manh-Huong | |
dc.date.accessioned | 2021-12-06T09:25:26Z | |
dc.date.available | 2021-12-06T09:25:26Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Interfacing an organic semiconductor C-60 with a non-magnetic metallic thin film (Cu or Pt) has created a novel heterostructure that is ferromagnetic at ambient temperature, while its interface with a magnetic metal (Fe or Co) can tune the anisotropic magnetic surface property of the material. Here, we demonstrate that sandwiching C-60 in between a magnetic insulator (Y3Fe5O12:YIG) and a non-magnetic, strong spin-orbit metal (Pt) promotes highly efficient spin current transport via the thermally driven spin Seebeck effect (SSE). Experiments and first principles calculations consistently show that the presence of C-60 reduces significantly the conductivity mismatch between YIG and Pt and the surface perpendicular magnetic anisotropy of YIG, giving rise to enhanced spin mixing conductance across YIG/C-60/Pt interfaces. As a result, a 600% increase in the SSE voltage (V-LSSE) has been realized in YIG/C-60/Pt relative to YIG/Pt. Temperature-dependent SSE voltage measurements on YIG/C-60/Pt with varying C-60 layer thicknesses also show an exponential increase in V-LSSE at low temperatures below 200 K, resembling the temperature evolution of spin diffusion length of C-60. Our study emphasizes the important roles of the magnetic anisotropy and the spin diffusion length of the intermediate layer in the SSE in YIG/C-60/Pt structures, providing a new pathway for developing novel spin-caloric materials. | en_GB |
dc.identifier.doi | http://doi.org/10.25358/openscience-5325 | |
dc.identifier.uri | https://openscience.ub.uni-mainz.de/handle/20.500.12030/5329 | |
dc.language.iso | eng | de |
dc.rights | InC-1.0 | * |
dc.rights.uri | https://rightsstatements.org/vocab/InC/1.0/ | * |
dc.subject.ddc | 530 Physik | de_DE |
dc.subject.ddc | 530 Physics | en_GB |
dc.title | Giant spin Seebeck effect through an interface organic semiconductor | en_GB |
dc.type | Zeitschriftenaufsatz | de |
jgu.journal.issue | 5 | de |
jgu.journal.title | Materials Horizons | de |
jgu.journal.volume | 7 | de |
jgu.organisation.department | FB 08 Physik, Mathematik u. Informatik | de |
jgu.organisation.name | Johannes Gutenberg-Universität Mainz | |
jgu.organisation.number | 7940 | |
jgu.organisation.place | Mainz | |
jgu.organisation.ror | https://ror.org/023b0x485 | |
jgu.pages.end | 1420 | de |
jgu.pages.start | 1413 | de |
jgu.publisher.doi | 10.1039/C9MH01498E | |
jgu.publisher.issn | 2051-6347 | de |
jgu.publisher.name | RSC Publ. | de |
jgu.publisher.place | Cambridge | de |
jgu.publisher.uri | https://doi.org/10.1039/C9MH01498E | de |
jgu.publisher.year | 2020 | |
jgu.rights.accessrights | openAccess | |
jgu.subject.ddccode | 530 | de |
jgu.type.contenttype | Scientific article | de |
jgu.type.dinitype | Article | en_GB |
jgu.type.resource | Text | de |
jgu.type.version | Accepted version | de |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- kalappattil_v-giant_spin_see-20201110134920739.pdf
- Size:
- 923.31 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 3.57 KB
- Format:
- Item-specific license agreed upon to submission
- Description: