Micro- and nano-porosity of the active Alpine Fault zone, New Zealand

dc.contributor.authorMartina, Kirilova
dc.contributor.authorToy, Virginia
dc.contributor.authorSauer, Katrina
dc.contributor.authorRenard, François
dc.contributor.authorGessner, Klaus
dc.contributor.authorWirth, Richard
dc.contributor.authorXiao, Xianghui
dc.contributor.authorMatsumura, Risa
dc.date.accessioned2021-01-28T11:17:24Z
dc.date.available2021-01-28T11:17:24Z
dc.date.issued2020
dc.description.abstractPorosity reduction in rocks from a fault core can cause elevated pore fluid pressures and consequently influence the recurrence time of earthquakes. We investigated the porosity distribution in the New Zealand's Alpine Fault core in samples recovered during the first phase of the Deep Fault Drilling Project (DFDP-1B) by using two-dimensional nanoscale and three-dimensional microscale imaging. Synchrotron X-ray microtomography-derived analyses of open pore spaces show total microscale porosities in the range of 0.1 %–0.24 %. These pores have mainly non-spherical, elongated, flat shapes and show subtle bipolar orientation. Scanning and transmission electron microscopy reveal the samples' microstructural organization, where nanoscale pores ornament grain boundaries of the gouge material, especially clay minerals. Our data imply that (i) the porosity of the fault core is very small and not connected; (ii) the distribution of clay minerals controls the shape and orientation of the associated pores; (iii) porosity was reduced due to pressure solution processes; and (iv) mineral precipitation in fluid-filled pores can affect the mechanical behavior of the Alpine Fault by decreasing the already critically low total porosity of the fault core, causing elevated pore fluid pressures and/or introducing weak mineral phases, and thus lowering the overall fault frictional strength. We conclude that the current state of very low porosity in the Alpine Fault core is likely to play a key role in the initiation of the next fault rupture.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizin Mainzde
dc.identifier.doihttp://doi.org/10.25358/openscience-5605
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/5609
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc550 Geowissenschaftende_DE
dc.subject.ddc550 Earth sciencesen_GB
dc.titleMicro- and nano-porosity of the active Alpine Fault zone, New Zealanden_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.issue6de
jgu.journal.titleSolid earthde
jgu.journal.volume11de
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.de
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7950
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.end2438de
jgu.pages.start2425de
jgu.publisher.doi10.5194/se-11-2425-2020
jgu.publisher.issn1869-9529de
jgu.publisher.nameCopernicus Publ.de
jgu.publisher.placeGöttingende
jgu.publisher.urihttps://doi.org/10.5194/se-11-2425-2020de
jgu.publisher.year2020
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode550de
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
martina_kirilova-micro-_and_nan-20210128121057932.pdf
Size:
13.81 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description: