Integrable systems and a moduli space for (1,6)-polarised abelian surfaces

dc.contributor.authorBiroth, Laura
dc.date.accessioned2019-11-29T09:02:13Z
dc.date.available2019-11-29T10:02:13Z
dc.date.issued2019
dc.description.abstractA Hamiltonian system is a type of differential equation used in physics to describe the evolution of a mechanical system like a particle in a potential. Certain particularly well-behaved Hamiltonian systems are called integrable. For us an integrable system on C^(2n) is simply a set of n independent Poisson-commuting polynomials in 2n variables. In case the system is algebraically completely integrable the fibres of the induced map are affine parts of abelian varieties. In this thesis we study a projective model for the moduli-space of embedded (1,6)-polarised abelian surfaces first described by Gross and Popescu. We analyse its discriminant locus, the degenerations occurring, the form of the equations describing each surface and the automorphisms of this moduli space. In the last chapter we compute the cohomology of some quasi-homogeneous integrable systems on C^4.en_GB
dc.description.abstractEin Hamiltonsches System ist ein Typ von Differentialgleichung, der in der Physik benutzt wird um mechanische Systeme, wie zum Beispiel eine Punktmasse in einem Potential, zu beschreiben. Eine bestimmte Klasse Hamiltonscher Systeme, die sich besonders gut verhält, heißt integrabel. Für uns ist ein integrables System auf C^(2n) einfach eine Menge von n unabhängigen Poisson-kommutierenden Polynomen in 2n Variablen. Im Fall dass das System algebraisch vollständig integrabel ist, sind die Fasern der induzierten Abbildung affine Teile von abelschen Varietäten. In dieser Arbeit untersuchen wir ein projektives Model für den Modulraum von eingebetteten (1,6)-polarisierten abelschen Flächen, der erstmals von Gross und Popescu beschrieben wurde. Wir analysieren seine Diskriminante, die auftretenden Entartungen, die Form der Gleichungen, die jede Fläche beschreiben, und die Automorphismen dieses Modulraums. Im letzten Kapitel berechnen wir die Kohomologie einiger quasi-homogener integrabler Systeme auf C^4.de_DE
dc.identifier.doihttp://doi.org/10.25358/openscience-2384
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/2386
dc.identifier.urnurn:nbn:de:hebis:77-diss-1000031892
dc.language.isoeng
dc.rightsInC-1.0de_DE
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510 Mathematikde_DE
dc.subject.ddc510 Mathematicsen_GB
dc.titleIntegrable systems and a moduli space for (1,6)-polarised abelian surfacesen_GB
dc.typeDissertationde_DE
jgu.description.extentviii, 110 Seiten
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7940
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.organisation.year2019
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode510
jgu.type.dinitypePhDThesis
jgu.type.resourceText
jgu.type.versionOriginal worken_GB
opus.date.accessioned2019-11-29T09:02:13Z
opus.date.available2019-11-29T10:02:13
opus.date.modified2019-11-29T09:52:05Z
opus.identifier.opusid100003189
opus.institute.number0804
opus.metadataonlyfalse
opus.organisation.stringFB 08: Physik, Mathematik und Informatik: Institut für Mathematikde_DE
opus.subject.dfgcode00-000
opus.type.contenttypeDissertationde_DE
opus.type.contenttypeDissertationen_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
100003189.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format