Investigation of different shellac grades and improvement of release from air suspension coated pellets

dc.contributor.authorOsman, Zuheir
dc.date.accessioned2013-01-10T14:43:22Z
dc.date.available2013-01-10T15:43:22Z
dc.date.issued2013
dc.description.abstractShellac is the purified product of the natural polymer Lac. Shellac types, from different origins and with different ages, all purified by the solvent extraction process were compared in this study. Their physicochemical properties acid value, glass transition temperatures, color numbers and molecular sizes were determined. Metoprolol tartrate pellets were coated by air suspension coating with these different grades of shellac. Two coating levels 20% w/w and 25% w/w were applied and then subjected to in vitro dissolution testing. Enteric resistance was achieved for all tested brands for the two coating levels. At pH 6.8, 7.2 and 7.4, significant variations were obvious between the brands. \r\nMoreover the molecular size of shellac has a pronounced effect in that shellac types with larger molecular size show a higher and faster release than others, while the one with the smaller molecular size show the opposite effect on the release of metoprolol.\r\nIn this study commercially available ready for use aqueous shellac solutions (SSB AQUAGOLD), which are based on shellac SSB 57 (Dewaxed Orange Shellac, Bysakhi-Ber type refined in a solvent extraction process), with different manufacturing dates were used. \r\nTo improve the enteric coating properties of films from aqueous shellac solutions, different aqueous polymeric solutions of hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), carboyxmethyl cellulose (CMC), gum arabic and polysaccharides (Pullulan®) were used. These water soluble polymers will act as pore formers to enhance drug release from pellets coated with the combination of shellac and these polymers. The influence of these polymers on the gloss of the shellac films, mechanical properties of the films and drug release from metoprolol tartrate pellets were studied.\r\nThe potential of ethanol to alter the rate of drug release from shellac coated pellets was assessed by using a modified in vitro dose dumping in alcohol (DDA) method and the test concluded that shellac coated dosage forms can be co-administered with alcohol beverages containing ≤ 5% with no effect of alcohol on the shellac coat.\r\nPellets coated with shellac sodium salts, showed higher release rates than pellets coated with shellac as ammonium salt forms. \r\nen_GB
dc.identifier.doihttp://doi.org/10.25358/openscience-4364
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/4366
dc.identifier.urnurn:nbn:de:hebis:77-33252
dc.language.isoeng
dc.rightsInC-1.0de_DE
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc500 Naturwissenschaftende_DE
dc.subject.ddc500 Natural sciences and mathematicsen_GB
dc.titleInvestigation of different shellac grades and improvement of release from air suspension coated pelletsen_GB
dc.typeDissertationde_DE
jgu.description.extent115 S.
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7950
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.organisation.year2012
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode500
jgu.type.dinitypePhDThesis
jgu.type.resourceText
jgu.type.versionOriginal worken_GB
opus.date.accessioned2013-01-10T14:43:22Z
opus.date.available2013-01-10T15:43:22
opus.date.modified2013-01-14T14:07:20Z
opus.identifier.opusid3325
opus.institute.number0908
opus.metadataonlyfalse
opus.organisation.stringFB 09: Chemie, Pharmazie und Geowissenschaften: Institut für Pharmaziede_DE
opus.subject.dfgcode00-000
opus.subject.otherPharmacy, Drug Delivery.de_DE
opus.subject.otherPharmacy, Drug Delivery.en_GB
opus.type.contenttypeDissertationde_DE
opus.type.contenttypeDissertationen_GB

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3325.pdf
Size:
5.27 MB
Format:
Adobe Portable Document Format