Machine learning aided classification of tremor in multiple sclerosis

dc.contributor.authorHossen, Abdulnasir
dc.contributor.authorAnwar, Abdul Rauf
dc.contributor.authorKoirala, Nabin
dc.contributor.authorDing, Hao
dc.contributor.authorBudker, Dmitry
dc.contributor.authorWickenbrock, Arne
dc.contributor.authorHeute, Ulrich
dc.contributor.authorDeuschl, Günther
dc.contributor.authorGroppa, Sergiu
dc.contributor.authorMuthuraman, Muthuraman
dc.date.accessioned2023-01-20T08:18:00Z
dc.date.available2023-01-20T08:18:00Z
dc.date.issued2022
dc.description.abstractBackground Tremors are frequent and disabling in people with multiple sclerosis (MS). Characteristic tremor frequencies in MS have a broad distribution range (1–10 Hz), which confounds the diagnostic from other forms of tremors. In this study, we propose a classification method for distinguishing MS tremors from other forms of cerebellar tremors. Methods Electromyogram (EMG), accelerometer and clinical data were obtained from a total of 120 [40 MS, 41 essential tremor (ET) and 39 Parkinson's disease (PD)] subjects. The proposed method - Soft Decision Wavelet Decomposition (SDWD) - was used to compute power spectral densities and receiver operating characteristic (ROC) analysis was performed for the automatic classification of the tremors. Association between the spectral features and clinical features (FTM - Fahn-Tolosa-Marin scale, UPDRS - Unified Parkinson's Disease Rating Scale), was assessed using a support vector regression (SVR) model. Findings Our developed analytical framework achieved an accuracy of up to 91.67% using accelerometer data and up to 91.60% using EMG signals for the differentiation of MS tremors and the tremors from ET and PD. In addition, SVR further revealed strong significant correlations between the selected discriminators and the clinical scores. Interpretation The proposed method, with high classification accuracy and strong correlations of these features to clinical outcomes, has clearly demonstrated the potential to complement the existing tremor-diagnostic approach in MS patients.en_GB
dc.description.sponsorshipGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491381577de
dc.identifier.doihttp://doi.org/10.25358/openscience-8593
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8609
dc.language.isoengde
dc.rightsCC-BY-NC-ND-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.titleMachine learning aided classification of tremor in multiple sclerosisen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleeBioMedicinede
jgu.journal.volume82de
jgu.organisation.departmentFB 04 Medizinde
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number2700
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative104152de
jgu.publisher.doi10.1016/j.ebiom.2022.104152de
jgu.publisher.issn2352-3964de
jgu.publisher.nameElsevierde
jgu.publisher.placeAmsterdamde
jgu.publisher.year2022
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode610de
jgu.subject.dfgLebenswissenschaftende
jgu.type.contenttypeScientific articlede
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
machine_learning_aided_classi-20230119101143154.pdf
Size:
625.57 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections