Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-9779
Authors: Ucar, Felix A.
Frenzel, Marius
Kronfeld, Andrea
Altmann, Sebastian
Sanner, Antoine P.
Abello Mercado, Mario Alberto
Uphaus, Timo
Brockmann, Marc A.
Othman, Ahmed E.
Title: Improvement of neurovascular imaging using ultra-high-resolution computed tomography angiography
Online publication date: 16-Jan-2024
Year of first publication: 2023
Language: english
Abstract: Objective To evaluate diagnostic image quality of ultra-high-resolution computed tomography angiography (UHR-CTA) in neurovascular imaging as compared to normal resolution CT-angiography (NR-CTA). Material and Methods In this retrospective single-center study brain and neck CT-angiography was performed using an ultra-high-resolution computed tomography scanner (n = 82) or a normal resolution CT scanner (NR-CTA; n = 73). Ultra-high-resolution images were reconstructed with a 1024 × 1024 matrix and a slice thickness of 0.25 mm, whereas NR-CT images were reconstructed with a 512 × 512 matrix and a slice thickness of 0.5 mm. Three blinded neuroradiologists assessed overall image quality, artifacts, image noise, overall contrast and diagnostic confidence using a 4-point Likert scale. Furthermore, the visualization and delineation of supra-aortic arteries with an emphasis on the visualization of small intracerebral vessels was assessed using a cerebral vascular score, also utilizing a 4-point Likert scale. Quantitative analyses included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), noise and the steepness of gray value transition. Radiation exposure was determined by comparison of computed tomography dose index (CTDIvol), dose length product (DLP) and mean effective dose. Interrater agreement was evaluated via determining Fleiss-Kappa. Results Ultra-high-resolution CT-angiography (UHR-CTA) yielded excellent image quality with superior quantitative (SNR: p < 0.001, CNR: p < 0.001, steepness of gray value transition: p < 0.001) and qualitative results (overall image quality: 4 (Inter quartile range (IQR) = 4–4); p < 0.001, diagnostic confidence: 4 (IQR = 4–4); p < 0.001) compared to NR-CT (overall image quality: 3 (IQR = 3–3), diagnostic confidence: 3 (IQR = 3–4)). Furthermore, UHR-CT enabled significantly superior delineation and visualization of all vascular segments, from proximal extracranial vessels to the smallest peripheral cerebral branches (e.g., UHR-CTA PICA: 4 (3–4) vs. NR-CTA PICA: 3 (2–3); UHR-CTA P4: 4 (IQR = 3–4) vs. NR-CTA P4: 2 (IQR = 2–3); UHR-CTA M4: 4 (IQR = 4–4) vs. NR-CTA M4: 3 (IQR = 2–3); UHR-CTA A4: 4 (IQR = 3–4) vs. NR-CTA A4: 2 (IQR = 2–3); all p < 0.001). Noteworthy, a reduced mean effective dose was observed when applying UHR-CT (NR-CTA: 1.8 ± 0.3 mSv; UHR-CTA: 1.5 ± 0.5 mSv; p < 0.001). Conclusion Ultra-high-resolution CT-angiography improves image quality in neurovascular imaging allowing the depiction and evaluation of small peripheral cerebral arteries. It may thus improve the detection of pathologies in small cerebrovascular lesions and the resulting diagnosis.
DDC: 610 Medizin
610 Medical sciences
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 04 Medizin
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-9779
Version: Published version
Publication type: Zeitschriftenaufsatz
License: CC BY
Information on rights of use: https://creativecommons.org/licenses/by/4.0/
Journal: Clinical neuroradiology
Version of Record (VoR)
Publisher: Urban & Vogel
Publisher place: München
Issue date: 2023
ISSN: 1869-1447
Publisher DOI: 10.1007/s00062-023-01348-1
Appears in collections:DFG-491381577-H

Files in This Item:
  File Description SizeFormat
Thumbnail
improvement_of_neurovascular_-20231208170919890.pdf1.94 MBAdobe PDFView/Open