Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-9580
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAshraf, Muhammad-
dc.contributor.authorAli, Roshan-
dc.contributor.authorKhan, Ibrahim-
dc.contributor.authorUllah, Nisar-
dc.contributor.authorSohail Ahmad, Muhammad-
dc.contributor.authorKida, Tetsuya-
dc.contributor.authorWooh, Sanghyuk-
dc.contributor.authorTremel, Wolfgang-
dc.contributor.authorSchwingenschlögl, Udo-
dc.contributor.authorTahir, Muhammad Nawaz-
dc.date.accessioned2023-11-06T11:32:03Z-
dc.date.available2023-11-06T11:32:03Z-
dc.date.issued2023-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/9598-
dc.description.abstractThe uncondensed form of polymeric carbon nitrides (PCN), generally known as melon, is a stacked two-dimensional structure of poly(aminoimino)heptazine. Melon is used as a photocatalyst in solar energy conversion applications, but suffers from a poor photoconversion efficiency due to weak optical absorption in the visible spectrum, high activation energy, and inefficient separation of photoexcited charge carriers. We report experimental and theoretical studies to engineer the bandgap of melon with highly reduced graphene oxide (HRG). Three HRG@melon nanocomposites with different HRG:melon ratios (0.5%, 1%, and 2%) were prepared. The 1% HRG@melon nanocomposite showed a higher photocurrent density (71 μA cm−2) than melon (24 μA cm−2) in alkaline conditions. The addition of a hole scavenger further increased the photocurrent density to 630 μA cm−2 relative to the reversible hydrogen electrode (RHE). These experimental results were validated by calculations using density functional theory (DFT), which revealed that HRG results in a significant charge redistribution and an improved photocatalytic hydrogen evolution reaction (HER).en_GB
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)|491381577|Open-Access-Publikationskosten 2022–2024 Universität Mainz - Universitätsmedizin-
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc540 Chemiede_DE
dc.subject.ddc540 Chemistry and allied sciencesen_GB
dc.titleBandgap engineering of melon using highly reduced graphene oxide for enhanced photoelectrochemical hHydrogen evolutionen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-9580-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.de
jgu.organisation.number7950-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleAdvanced materialsde
jgu.journal.volumeVersion of Record (VoR)de
jgu.pages.alternative2301342de
jgu.publisher.year2023-
jgu.publisher.nameWiley-VCHde
jgu.publisher.placeWeinheimde
jgu.publisher.issn0935-9648de
jgu.organisation.placeMainz-
jgu.subject.ddccode540de
jgu.publisher.doi10.1002/adma.202301342de
jgu.organisation.rorhttps://ror.org/023b0x485-
Appears in collections:DFG-491381577-H

Files in This Item:
  File Description SizeFormat
Thumbnail
bandgap_engineering_of_melon_-20231106122138320.pdf4.21 MBAdobe PDFView/Open