Bandgap engineering of melon using highly reduced graphene oxide for enhanced photoelectrochemical hHydrogen evolution

dc.contributor.authorAshraf, Muhammad
dc.contributor.authorAli, Roshan
dc.contributor.authorKhan, Ibrahim
dc.contributor.authorUllah, Nisar
dc.contributor.authorSohail Ahmad, Muhammad
dc.contributor.authorKida, Tetsuya
dc.contributor.authorWooh, Sanghyuk
dc.contributor.authorTremel, Wolfgang
dc.contributor.authorSchwingenschlögl, Udo
dc.contributor.authorTahir, Muhammad Nawaz
dc.date.accessioned2023-11-06T11:32:03Z
dc.date.available2023-11-06T11:32:03Z
dc.date.issued2023
dc.description.abstractThe uncondensed form of polymeric carbon nitrides (PCN), generally known as melon, is a stacked two-dimensional structure of poly(aminoimino)heptazine. Melon is used as a photocatalyst in solar energy conversion applications, but suffers from a poor photoconversion efficiency due to weak optical absorption in the visible spectrum, high activation energy, and inefficient separation of photoexcited charge carriers. We report experimental and theoretical studies to engineer the bandgap of melon with highly reduced graphene oxide (HRG). Three HRG@melon nanocomposites with different HRG:melon ratios (0.5%, 1%, and 2%) were prepared. The 1% HRG@melon nanocomposite showed a higher photocurrent density (71 μA cm−2) than melon (24 μA cm−2) in alkaline conditions. The addition of a hole scavenger further increased the photocurrent density to 630 μA cm−2 relative to the reversible hydrogen electrode (RHE). These experimental results were validated by calculations using density functional theory (DFT), which revealed that HRG results in a significant charge redistribution and an improved photocatalytic hydrogen evolution reaction (HER).en_GB
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)|491381577|Open-Access-Publikationskosten 2022–2024 Universität Mainz - Universitätsmedizin
dc.identifier.doihttp://doi.org/10.25358/openscience-9580
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/9598
dc.language.isoengde
dc.rightsCC-BY-4.0*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc540 Chemiede_DE
dc.subject.ddc540 Chemistry and allied sciencesen_GB
dc.titleBandgap engineering of melon using highly reduced graphene oxide for enhanced photoelectrochemical hHydrogen evolutionen_GB
dc.typeZeitschriftenaufsatzde
jgu.journal.titleAdvanced materialsde
jgu.journal.volumeVersion of Record (VoR)de
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.de
jgu.organisation.nameJohannes Gutenberg-Universität Mainz
jgu.organisation.number7950
jgu.organisation.placeMainz
jgu.organisation.rorhttps://ror.org/023b0x485
jgu.pages.alternative2301342de
jgu.publisher.doi10.1002/adma.202301342de
jgu.publisher.issn0935-9648de
jgu.publisher.nameWiley-VCHde
jgu.publisher.placeWeinheimde
jgu.publisher.year2023
jgu.rights.accessrightsopenAccess
jgu.subject.ddccode540de
jgu.subject.dfgNaturwissenschaftende
jgu.type.dinitypeArticleen_GB
jgu.type.resourceTextde
jgu.type.versionPublished versionde

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bandgap_engineering_of_melon_-20231106122138320.pdf
Size:
4.12 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.98 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections