Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-955
Authors: Li, Jiaoli
Title: Photovoltaics from discotic liquid crystalline HBCs & poly(2,7-carbazole)s
Online publication date: 30-Apr-2007
Year of first publication: 2007
Language: english
Abstract: In this study, the use of the discotic liquid crystalline HBCs and conjugated polymers based on 2,7-carbazole were investigated in detail as donor materials in organic bulk-heterojunction solar cells. It has been shown that they perform efficiently in photovoltaic devices in combination with suitable acceptors. The efficiency was found to depend strongly dependent on the morphology of the film. By investigation of a series of donor materials with similar molecular structures based on both discotic molecules and conjugated polymers, a structure-performance relation was established, which is not only instructive for these materials but also serves as a guideline for improved molecular design. For the series of HBCs used in this study, it is found that the device efficiency decreases with increasing length of the alkyl substituents in the HBC. Thus, the derivative with the smallest alkyl mantle, being more crystalline compared to the HBCs with longer alkyl chains, gave the highest EQE of 12%. A large interfacial separation was found in the blend of HBC-C6,2 and PDI, since the crystallization of the acceptor occurred in a solid matrix of HBC. This led to small dispersed organized domains and benefited the charge transport. In contrast, blends of HBC-C10,6/PDI or HBC-C14,10/PDI revealed a rather homogeneous film limiting the percolation pathways due to a mixed phase. For the first time, poly(2,7-carbazole) was incorporated as a donor material in solar cells using PDI as an electron acceptor. The good fit in orbital energy levels and absorption spectra led to high efficiency. This result indicates that conjugated polymers with high band-gap can also be applied as materials to build efficient solar cells if appropriate electron acceptors are chosen. In order to enhance the light absorption ability, new ladder-type polymers based on pentaphenylene and hexaphenylene with one and three nitrogen bridges per repeat unit have been synthesized and characterized. The polymer 2 with three nitrogen bridges showed more red-shifted absorbance and emission and better packing in the solid-state than the analogous polymer 3 with only one nitrogen bridge per monomer unit. An overall efficiency as high as 1.3% under solar light was obtained for the device based on 1 and PDI, compared with 0.7% for the PCz based device. Therefore, the device performance correlates to a large extent with the solar light absorption ability and the lateral distance between conjugated polymer chains. Since the lateral distance is determined by the length and number of attached alkyl side chains, it is possible to assume that these substituents insulate the charge carrier pathways and decrease the device performance. As an additional consequence, the active semiconductor is diluted in the insulating matrix leading to a lower light absorption. This work suggests ways to improve device performance by molecular design, viz. maintaining the HOMO level while bathochromically shifting the absorption by adopting a more rigid ladder-type structure. Also, a high ratio of nitrogen bridges with small alkyl substituents was a desirable feature both in terms of adjusting the absorption and maintaining a low lateral inter-chain separation, which was necessary for obtaining high current and efficiency values.
DDC: 500 Naturwissenschaften
500 Natural sciences and mathematics
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 09 Chemie, Pharmazie u. Geowissensch.
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-955
URN: urn:nbn:de:hebis:77-12971
Version: Original work
Publication type: Dissertation
License: In Copyright
Information on rights of use: https://rightsstatements.org/vocab/InC/1.0/
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
1297.pdf8.37 MBAdobe PDFView/Open