Please use this identifier to cite or link to this item:
http://doi.org/10.25358/openscience-9497
Authors: | Berressem, Fabian |
Advisor: | Nikoubashman, Arash |
Title: | Coarse-graining and inverse design in soft matter via local density-dependent potentials and machine learning methods |
Online publication date: | 12-Sep-2023 |
Year of first publication: | 2023 |
Language: | english |
Abstract: | The fields of material sciences and soft matter have been and continue to be of
great importance for both modern research as well as our everyday life. Especially the advent of computers and consecutively the establishment of computer
simulations caused these research areas to gain even more momentum and
led to great improvements and achievements. However, even with modern
computing resources and algorithms, there remain significant challenges when
considering systems where microscopic details are important for the macroscopic behavior. While methods like ab-initio-simulations are fairly capable
of treating small systems with quantum-mechanical detail, other techniques
like finite-element-methods are able to capture macroscopic behavior in the
continuous limit. Besides exhibiting interesting phenomena on their own, the
intermediate scales are dedicated to bridging these regimes via the methodology of coarse-graining. In recent years, by virtue of machine learning becoming
broadly available and a thoroughly studied field, there has been another ad-
vancement, that has opened up new, data-driven approaches to statistical
physics and computer simulations. This young field has soon led to impressive
results, hence establishing itself rapidly as a new pillar of sciences and engi-
neering.
This work aims at making a contribution to both the field of coarse-graining as
well as machine learning and is split in two main parts:
In the first contribution we apply neural networks for forward and inverse
design, specifically to the tasks of approximating mappings from pair potentials
to the resulting equation of state as well as from the radial distribution function
to the effective pair potential leading to it. These tasks are very interesting as the
first mapping allows for rapid prototyping when searching for materials with a
desired equation of state, while the second can be used to improve established,
iterative coarse-graining techniques. In both tasks, we focused mainly on the
impact of the representation of the respective inputs and outputs, in order to
yield good generalization capabilities despite the small number of available
training examples.
The second contribution is a bottom-up coarse-graining scheme for inhomogeneous systems where whole polymer chains are mapped to single beads.
In our parametrization scheme, the coarse-grained beads interact via a pair
potential as well as either a three-body Stillinger-Weber potential or a local density-dependent potential. We find that the combination of pair potential
and three-body potential fails to reproduce the film-forming properties of our
reference system. The systems interacting via local density-dependent potentials on the other hand are able to do so and even show quantitative agreement
with regards to the width of the films. On further investigation, we find that
there seems to be no unique correspondence between the distribution of the
local density, which was optimized in our work, and the density profiles. This
non-correspondence becomes stronger for increasing degrees of polymerization and hence increasing interpenetration of the polymer chains, which is
why our approach is for now only applicable to smaller molecules. In the corresponding chapters we also elaborate on possible mitigation strategies for this
shortcoming. Das Studium der Materialien und der Weichen Materie war und ist noch immer von großer Wichtigkeit sowohl für die moderne Forschung als auch für unser alltägliches Leben. Vor allem das Aufkommen von Computern und folglich der Etablierung von Computersimulationen hat diese Forschungsgebiete sogar noch mehr an Dynamik gewinnen lassen und zu großen Fortschritten und Errungenschaften geführt. Selbst mit modernen Rechenkapazitäten und Algorithmen bestehen jedoch weiterhin signifikante Herausforderungen bei der Untersuchung großer Systeme, bei denen mikroskopische Details das makroskopische Verhalten bedingen. Während Methoden wie ab-initio-Simulationen gut geeignet sind, um kleine Systeme in quantenmechanischem Detail zu be- handeln, vermögen es andere Methoden wie Finite-Element-Methoden, das makroskopische Verhalten im Kontinuumslimit darzustellen. Die dazwischen- liegende Skalen zeigen für sich ebenfalls interessante Phänomene, dienen aber auch dem Überbrücken der anderen Regime mittels der Methode der “gezielten Vergröberung”. In den vergangenen Jahren, haben sich durch die Verbreitung und das Studium von Maschinellem Lernen neue, datengetriebene Zugänge zur statistischen Physik und Computersimulationen eröffnet. Dieses junge Feld hat schon früh zu beeindruckenden Resultaten geführt und sich damit schnell als eine neue Säule der Natur- und Ingenieurswissenschaften etablieren können. Diese Arbeit zielt darauf ab, einen Beitrag sowohl zum Feld der gezielten Vergröberung als auch des Maschinellen Lernens zu leisten, und ist in zwei Teile unterteilt: Im ersten Beitrag haben wir neuronale Netze im Bereich des direkten Designs und des inversen Designs angewendet, im Speziellen auf die Aufgaben, eine Abbildung zwischen Paarpotentialen und der resultierenden Zustandsgleichung sowie zwischen der radialen Paarverteilungsfunktion und dem zugrundeliegenden effektiven Paarpotential zu approximieren. Diese Aufgaben sind besonders interessant, da es die erste Abbildung ermöglicht, bei der Suche nach Materialien mit gewünschter Ziel-Zustandsgleichung schneller Prototypen entwickeln zu können, während die zweite Abbildung geeignet ist, etablierte, iterative Vergröberungsmethoden zu verbessern. In beiden Unteraufgaben lag der Fokus besonders auf dem Einfluss der Darstellung der jeweiligen Ein- und Ausgaben, um trotz der geringen Menge an verfügbaren Trainingsdaten eine gute Generalisierung zu erzielen. Der zweite Beitrag ist ein Bottom-Up Vergröberungsschema für inhomogene Systeme, in denen ganze Polymerketten in einzelnen Kugeln zusammengefasst sind. In unserer Parametrisierung wechselwirken die vergröberten Kugeln mittels eines Paarpotentials und zusätzlich entweder mittels eines drei-Körper Stillinger-Weber-Potentials oder eines Potentials, das von der lokalen Dichte abhängt. Es zeigt sich, dass die Kombination des Paarpotentials und des Stillinger- Weber-Potentials nicht geeignet ist, um die Eigenschaft des Referenzsystems, dünne Filme zu bilden, reproduzieren zu können. Dagegen vermögen die Systeme mit lokal-Dichte-abhängigen Wechselwirkungen, diese Eigenschaft zu erhalten und zeigen dabei sogar quantitative Übereinstimmung bei der Breite der resultierenden Filme. Bei der weiteren Untersuchung stellt sich heraus, dass es keine eindeutige Korrespondenz zwischen der Verteilung der lokalen Dichte, bezüglich der unsere Modelle optimiert sind, und den Dichteprofilen zu geben scheint. Diese Nichtkorrespondenz wird für steigende Polymerisierungsgrade und folglich zunehmende Interpenetrierung von Polymeren stärker, was dazu führt, dass unser Ansatz bisher lediglich für kleinere Moleküle geeignet ist. In den entsprechenden Kapiteln gehen wir auch auf mögliche Lösungsstrategien für dieses Defizit ein. |
DDC: | 004 Informatik 004 Data processing 500 Naturwissenschaften 500 Natural sciences and mathematics 530 Physik 530 Physics 540 Chemie 540 Chemistry and allied sciences 570 Biowissenschaften 570 Life sciences 600 Technik 600 Technology (Applied sciences) 660 Technische Chemie 660 Chemical engineering |
Institution: | Johannes Gutenberg-Universität Mainz |
Department: | FB 08 Physik, Mathematik u. Informatik |
Place: | Mainz |
ROR: | https://ror.org/023b0x485 |
DOI: | http://doi.org/10.25358/openscience-9497 |
URN: | urn:nbn:de:hebis:77-openscience-81b18265-3443-4270-bb74-764d48efbb625 |
Version: | Original work |
Publication type: | Dissertation |
License: | CC BY-ND |
Information on rights of use: | https://creativecommons.org/licenses/by-nd/4.0/ |
Extent: | ix, 193 Seiten ; Illustrationen, Diagramme |
Appears in collections: | JGU-Publikationen |
Files in This Item:
File | Description | Size | Format | ||
---|---|---|---|---|---|
![]() | coarsegraining_and_inverse_de-20230830201216774.pdf | 24.08 MB | Adobe PDF | View/Open |