Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-9179
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBoventer, Isabella-
dc.contributor.authorSimensen, H. T.-
dc.contributor.authorBrekke, Bjørnulf-
dc.contributor.authorWeides, Martin-
dc.contributor.authorAnane, A.-
dc.contributor.authorKläui, Mathias-
dc.contributor.authorBrataas, A.-
dc.contributor.authorLebrun, Romain-
dc.date.accessioned2023-06-15T09:45:02Z-
dc.date.available2023-06-15T09:45:02Z-
dc.date.issued2023-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/9196-
dc.description.abstractCavity spintronics explores light-matter interactions at the interface between spintronic and quantum phenomena. Until now, studies have focused on the hybridization between magnons in ferromagnets and cavity photons. Here, we realize antiferromagnetic cavity magnon polaritons. Hybridization arises from the interaction of the collective spin motion in single hematite crystals (α- Fe 2 O 3 ) and the microwave field of integrated cavities operating between 18 and 45 GHz. We show theoretically and experimentally that the photon-magnon coupling in the collinear phase is mediated by the dynamic Néel vector and the weak magnetic moment in the canted phase by measuring across the Morin transition. We show that the coupling strength, ~ g , scales with the anisotropy field in the collinear phase and with the Dzyaloshinskii-Moriya field in the canted phase. We reach the strong-coupling regime in both canted (cooperativity C > 70 for selected modes at 300 K) and noncollinear phases (C > 4 at 150 K), and thus, towards coherent information-exchange-harnessing antiferromagnetic cavity magnon polaritons. These results provide evidence for a generic strategy to achieve cavity magnon polaritons in antiferromagnets for different symmetries, opening the field of cavity spintronics to antiferromagnetic materials.en_GB
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleAntiferromagnetic cavity magnon polaritons in collinear and canted phases of hematiteen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-9179-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titlePhysical review appliedde
jgu.journal.volume19de
jgu.journal.issue1de
jgu.pages.alternative014071de
jgu.publisher.year2023-
jgu.publisher.nameAmerican Physical Societyde
jgu.publisher.placeCollege Park, Md. u.a.de
jgu.publisher.urihttp://doi.org/10.1103/PhysRevApplied.19.014071de
jgu.publisher.issn2331-7019de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
dc.date.updated2023-05-25T07:57:59Z-
jgu.publisher.doi10.1103/PhysRevApplied.19.014071de
elements.object.id151690-
elements.object.labels02 Physical Sciences-
elements.object.labels09 Engineering-
elements.object.labels40 Engineering-
elements.object.labels51 Physical sciences-
elements.object.typejournal-article-
jgu.organisation.rorhttps://ror.org/023b0x485-
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
antiferromagnetic_cavity_magn-20230525095801296.pdf17.19 MBAdobe PDFView/Open