Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-8092
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKühne, Thomas-
dc.contributor.authorAzadi, Sam-
dc.contributor.authorFoulkes, W. M. C.-
dc.date.accessioned2022-10-18T09:40:49Z-
dc.date.available2022-10-18T09:40:49Z-
dc.date.issued2013-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8107-
dc.description.abstractWe use the diffusion quantum Monte Carlo (DMC) method to calculate the ground-state phase diagram of solid molecular hydrogen and examine the stability of the most important insulating phases relative to metallic crystalline molecular hydrogen. We account for finite-size errors by combining the use of twist-averaged boundary conditions with corrections obtained using the Kwee–Zhang–Krakauer functional in density functional theory. To study the closure of the band gap with increasing pressure, we perform quasi-particle many-body calculations using the GW method. In the static approximation, our DMC simulations indicate a transition from the insulating Cmca-12 structure to the metallic Cmca structure at around 375 GPa. The GW band gap of Cmca-12 closes at roughly the same pressure. In the dynamic DMC phase diagram, which includes the effects of zero-point energy in the quasi-harmonic approximation, the Cmca-12 structure remains stable up to 430 GPa, well above the pressure at which the GW band gap closes. Our results predict that the semimetallic state observed experimentally at around 360 GPa (2012 Phys. Rev. Lett. 108, 146402) may correspond to the Cmca-12 structure near the pressure at which the band gap closes. The dynamic DMC phase diagram indicates that the hexagonal-close-packed P63/m structure, which has the largest band gap of the insulating structures considered, is stable up to 220 GPa. This is consistent with recent x-ray data taken at pressures up to 183 GPa (2010 Phys. Rev. B 82 060101), which also reported a hexagonal-close-packed arrangement of hydrogen molecules.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizinde
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/*
dc.subject.ddc540 Chemiede_DE
dc.subject.ddc540 Chemistry and allied sciencesen_GB
dc.titleQuantum Monte Carlo study of high pressure solid molecular hydrogenen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-8092-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.de
jgu.organisation.number7950-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleNew journal of physicsde
jgu.journal.volume15de
jgu.journal.issue11de
jgu.pages.alternativeArt. 113005de
jgu.publisher.year2013-
jgu.publisher.nameIOPde
jgu.publisher.placeLondonde
jgu.publisher.urihttp://dx.doi.org/10.1088/1367-2630/15/11/113005de
jgu.publisher.issn1367-2630de
jgu.organisation.placeMainz-
jgu.subject.ddccode540de
opus.date.modified2018-07-31T10:07:51Z-
opus.subject.dfgcode00-000-
opus.organisation.stringFB 09: Chemie, Pharmazie und Geowissenschaften: Institut für Physikalische Chemiede_DE
opus.identifier.opusid25158-
opus.institute.number0906-
opus.metadataonlyfalse-
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_EN
opus.affiliatedKühne, Thomas-
jgu.publisher.doi10.1088/1367-2630/15/11/113005de
jgu.organisation.rorhttps://ror.org/023b0x485-
Appears in collections:DFG-OA-Publizieren (2012 - 2017)

Files in This Item:
  File Description SizeFormat
Thumbnail
quantum_monte_carlo_study_of_-20220925171157928.pdf557.27 kBAdobe PDFView/Open