Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-8064
Full metadata record
DC FieldValueLanguage
dc.contributor.authorStengelin, Elena-
dc.contributor.authorNzigou Mombo, Brice-
dc.contributor.authorMondeshki, Mihail-
dc.contributor.authorBeltramo, Guillermo L.-
dc.contributor.authorLange, Martin A.-
dc.contributor.authorSchmidt, Patrick-
dc.contributor.authorFrerichs, Hajo-
dc.contributor.authorWegner, Seraphine V.-
dc.contributor.authorSeiffert, Sebastian-
dc.date.accessioned2022-11-08T11:06:27Z-
dc.date.available2022-11-08T11:06:27Z-
dc.date.issued2021-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8079-
dc.description.abstractFunctional microgels provide a versatile basis for synthetic in vitro platforms as alternatives to animal experiments. The tuning of the physical, chemical, and biological properties of synthetic microgels can be achieved by blending suitable polymers and formulating them such to reflect the heterogenous and complex nature of biological tissues. Based on this premise, this paper introduces the development of volume-switchable core–shell microgels as 3D templates to enable cell growth for microtissue applications, using a systematic approach to tune the microgel properties based on a deep conceptual and practical understanding. Microscopic microgel design, such as the tailoring of the microgel size and spherical shape, is achieved by droplet-based microfluidics, while on a nanoscopic scale, a thermoresponsive polymer basis, poly(N-isopropylacrylamide) (PNIPAAm), is used to provide the microgel volume switchability. Since PNIPAAm has only limited cell-growth promoting properties, the cell adhesion on the microgel is further improved by surface modification with polydopamine, which only slightly affects the microgel properties, thereby simplifying the system. To further tune the microgel thermoresponsiveness, different amounts of N-hydroxyethylacrylamide are incorporated into the PNIPAAm network. In a final step, cell growth on the microgel surface is investigated, both at a single microgel platform and in spheroidal cell structures.en_GB
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc540 Chemiede_DE
dc.subject.ddc540 Chemistry and allied sciencesen_GB
dc.titleRational design of thermoresponsive microgel templates with polydopamine surface coating for microtissue applicationsen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-8064-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.de
jgu.organisation.number7950-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleMacromolecular biosciencede
jgu.journal.volume21de
jgu.journal.issue9de
jgu.pages.alternative2100209de
jgu.publisher.year2021-
jgu.publisher.nameWiley-VCHde
jgu.publisher.placeWeinheimde
jgu.publisher.issn1616-5195de
jgu.organisation.placeMainz-
jgu.subject.ddccode540de
jgu.publisher.doi10.1002/mabi.202100209de
jgu.organisation.rorhttps://ror.org/023b0x485-
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
rational_design_of_thermoresp-20221017110951449.pdf4.02 MBAdobe PDFView/Open