Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-8056
Authors: Granold, Matthias
Moosmann, Bernd
Staib-Lasarzik, Irina
Arendt, Thomas
del Rey, Adriana
Engelhard, Kristin
Behl, Christian
Hajieva, Parvana
Title: High membrane protein oxidation in the human cerebral cortex
Online publication date: 17-Oct-2022
Year of first publication: 2015
Language: english
Abstract: Oxidative stress is thought to be one of the main mediators of neuronal damage in human neurodegenerative disease. Still, the dissection of causal relationships has turned out to be remarkably difficult. Here, we have analyzed global protein oxidation in terms of carbonylation of membrane proteins and cytoplasmic proteins in three different mammalian species: aged human cortex and cerebellum from patients with or without Alzheimer's disease, mouse cortex and cerebellum from young and old animals, and adult rat hippocampus and cortex subjected or not subjected to cerebral ischemia. Most tissues showed relatively similar levels of protein oxidation. However, human cortex was affected by severe membrane protein oxidation, while exhibiting lower than average cytoplasmic protein oxidation. In contrast, ex vivo autooxidation of murine cortical tissue primarily induced aqueous protein oxidation, while in vivo biological aging or cerebral ischemia had no major effect on brain protein oxidation. The unusually high levels of membrane protein oxidation in the human cortex were also not predicted by lipid peroxidation, as the levels of isoprostane immunoreactivity in human samples were considerably lower than in rodent tissues. Our results indicate that the aged human cortex is under steady pressure from specific and potentially detrimental membrane protein oxidation. The pronounced difference between humans, mice and rats regarding the primary site of cortical oxidation might have contributed to the unresolved difficulties in translating into therapies the wealth of data describing successful antioxidant neuroprotection in rodents.
DDC: 610 Medizin
610 Medical sciences
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 04 Medizin
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-8056
Version: Published version
Publication type: Zeitschriftenaufsatz
License: CC BY-NC-ND
Information on rights of use: https://creativecommons.org/licenses/by-nc-d/4.0/
Journal: Redox Biology
4
Pages or article number: 200
207
Publisher: Elsevier
Publisher place: Amsterdam
Issue date: 2015
ISSN: 2213-2317
Publisher URL: http://dx.doi.org/10.1016/j.redox.2014.12.013
Publisher DOI: 10.1016/j.redox.2014.12.013
Appears in collections:DFG-OA-Publizieren (2012 - 2017)

Files in This Item:
  File Description SizeFormat
Thumbnail
high_membrane_protein_oxidati-20220925164918523.pdf765.41 kBAdobe PDFView/Open