Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-7932
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVogel, Tim-
dc.contributor.authorOmar, Alan-
dc.contributor.authorMansourzadeh, Samira-
dc.contributor.authorWulf, Frank-
dc.contributor.authorMartín Sabanés, Natalia-
dc.contributor.authorMüller, Melanie-
dc.contributor.authorSeifert, Tom S.-
dc.contributor.authorWeigel, Alexander-
dc.contributor.authorJakob, Gerhard-
dc.contributor.authorKläui, Mathias-
dc.contributor.authorPupeza, Ioachim-
dc.contributor.authorKampfrath, Tobias-
dc.contributor.authorSaraceno, Clara J.-
dc.date.accessioned2022-10-17T09:57:22Z-
dc.date.available2022-10-17T09:57:22Z-
dc.date.issued2022-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7947-
dc.description.abstractMetallic spintronic terahertz (THz) emitters have become well-established for offering ultra-broadband, gapless THz emission in a variety of excitation regimes, in combination with reliable fabrication and excellent scalability. However, so far, their potential for high-average-power excitation to reach strong THz fields at high repetition rates has not been thoroughly investigated. In this article, we explore the power scaling behavior of tri-layer spintronic emitters using an Yb-fiber excitation source, delivering an average power of 18.5 W (7 W incident on the emitter after chopping) at 4(X) kHz repetition rate, temporally compressed to a pulse duration of 27 fs. We confirm that a reflection geometry with back-side cooling is ideally suited for these emitters in the high-average-power excitation regime. In order to understand limiting mechanisms, we disentangle the effects on THz power generation by average power and pulse energy by varying the repetition rate of the laser. Our results show that the conversion efficiency is predominantly determined by the incident fluence in this high-average-power, high-repetition-rate excitation regime if the emitters are efficiently cooled. Using these findings, we optimize the conversion efficiency and reach highest excitation powers in the back-cooled reflection geometry. Our findings provide guidelines for scaling the power of THz radiation emitted by spintronic emitters to the milliwatt-level by using state-of-the-art femtosecond sources with multi-hundred-Watt average power to reach ultra-broadband, strong-field THz sources with high repetition rate.en_GB
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleAverage power scaling of THz spintronic emitters efficiently cooled in reflection geometryen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-7932-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleOptic expressde
jgu.journal.volume30de
jgu.journal.issue12de
jgu.pages.start20451de
jgu.pages.end20468de
jgu.publisher.year2022-
jgu.publisher.nameOpticade
jgu.publisher.placeWashington, DCde
jgu.publisher.issn1094-4087de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.publisher.doi10.1364/OE.453539de
jgu.organisation.rorhttps://ror.org/023b0x485-
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
average_power_scaling_of_thz_-20221010143459111.pdf3.46 MBAdobe PDFView/Open