Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-652
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSrivastva, Deepika-
dc.contributor.authorNikoubashman, Arash-
dc.date.accessioned2018-06-14T08:16:49Z-
dc.date.available2018-06-14T10:16:49Z-
dc.date.issued2018-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/654-
dc.description.abstractStar-shaped polymers show a continuous change of properties from flexible linear chains to soft colloids, as the number of arms is increased. to investigate the effect of macromolecular architecture on the flow properties, we employ computer simulations of single chain and star polymers as well as of their mixtures under poiseuille flow. hydrodynamic interactions are incorporated through the multi-particle collision dynamics (mpcd) technique, while a bead-spring model is used to describe the polymers. for the ultradilute systems at rest, the polymers are distributed uniformly in the slit channel, with a weak dependence on their number of arms. once flow is applied, however, we find that the stars migrate much more strongly towards the channel center as the number of arms is increased. in the star-chain mixtures, we find a flow-induced separation between stars and chains, with the stars located in the channel center and the chains closer to the walls. in order to identify the origin of this flow-induced partitioning, we conduct additional simulations without hydrodynamic interactions, and find that the observed cross-stream migration originates from a combination of wall-induced hydrodynamic lift forces and viscoelastic effects. the results from our study give valuable insights for designing microfluidic devices for separating polymers based on their architecture.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizin-
dc.language.isoeng-
dc.rightsCC BYde_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleFlow behavior of chain and star polymers and their mixturesen_GB
dc.typeZeitschriftenaufsatzde_DE
dc.identifier.doihttp://doi.org/10.25358/openscience-652-
jgu.type.dinitypearticle-
jgu.type.versionPublished versionen_GB
jgu.type.resourceText-
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik-
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titlePolymers-
jgu.journal.volume10-
jgu.journal.issue6-
jgu.pages.alternativeArt. 599-
jgu.publisher.year2018-
jgu.publisher.nameMDPI-
jgu.publisher.placeBasel-
jgu.publisher.urihttp://dx.doi.org/10.3390/polym10060599-
jgu.publisher.issn2073-4360-
jgu.organisation.placeMainz-
jgu.subject.ddccode530-
opus.date.accessioned2018-06-14T08:16:49Z-
opus.date.modified2018-06-14T08:28:11Z-
opus.date.available2018-06-14T10:16:49-
opus.subject.dfgcode00-000-
opus.organisation.stringFB 08: Physik, Mathematik und Informatik: Institut für Physikde_DE
opus.identifier.opusid58246-
opus.institute.number0801-
opus.metadataonlyfalse-
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_GB
opus.affiliatedNikoubashman, Arash-
jgu.publisher.doi10.3390/polym10060599
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
58246.pdf640.93 kBAdobe PDFView/Open