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Abstract: Star-shaped polymers show a continuous change of properties from flexible linear chains
to soft colloids, as the number of arms is increased. To investigate the effect of macromolecular
architecture on the flow properties, we employ computer simulations of single chain and star
polymers as well as of their mixtures under Poiseuille flow. Hydrodynamic interactions are
incorporated through the multi-particle collision dynamics (MPCD) technique, while a bead-spring
model is used to describe the polymers. For the ultradilute systems at rest, the polymers are
distributed uniformly in the slit channel, with a weak dependence on their number of arms. Once flow
is applied, however, we find that the stars migrate much more strongly towards the channel center
as the number of arms is increased. In the star-chain mixtures, we find a flow-induced separation
between stars and chains, with the stars located in the channel center and the chains closer to the walls.
In order to identify the origin of this flow-induced partitioning, we conduct additional simulations
without hydrodynamic interactions, and find that the observed cross-stream migration originates
from a combination of wall-induced hydrodynamic lift forces and viscoelastic effects. The results
from our study give valuable insights for designing microfluidic devices for separating polymers
based on their architecture.
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1. Introduction

The ability to separate dispersed particles based on their properties, e.g., size, shape, or elasticity,
is of immense importance for a large number of industrial and biological applications. For example,
cell deformability is an important biomarker for diagnosing diseases: it has been demonstrated that
cancer cells are significantly more deformable than healthy cells of the same tissue [1], and that the
stiffness of red blood cells is highly affected by blood diseases such as sickle cell anemia [2]. In the
past two decades, microfluidic devices have proven themselves as auspicious tools for the efficient
separation of particles in solution [3–11]. The development of such devices is advantageous, as they
can be operated continuously, thus allowing for high throughput and automation. Further, microfluidic
devices are light and portable, require only low amounts of sample, and they can be manufactured
cost-efficiently from polydimethylsiloxane (PDMS) [12].

To date, many different separation strategies have been developed, which can be roughly grouped
into two categories [8]: active methods based on the application of (additional) external fields,
and passive methods which exploit geometrical effects and/or (non-linear) hydrodynamic forces.
In this work, we will focus on the latter approach, because it is label-free and therefore can be applied
to a wide range of materials. Furthermore, non-linear hydrodynamic effects can be sustained or even
amplified at high flow rates, guaranteeing high throughput.

Polymers 2018, 10, 599; doi:10.3390/polym10060599 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-9044-3440
https://orcid.org/0000-0003-0563-825X
http://www.mdpi.com/2073-4360/10/6/599?type=check_update&version=1
http://dx.doi.org/10.3390/polym10060599
http://www.mdpi.com/journal/polymers


Polymers 2018, 10, 599 2 of 15

Early studies have concentrated on the flow behavior of rigid particles in the µm to mm range,
because these particle sizes can be resolved easily using optical microscopy. Here, it was found that
the dispersed particles could be focused in the channel by exploiting inertial [13] or viscoelastic [14,15]
flow effects. Due to the progressive miniaturization of microfluidic devices [16] and improvements
of optical tracking techniques [17,18], it is now also possible to probe and manipulate particles in the
nm regime. Here, it is of particular interest to study the behavior of macromolecules in microfluidic
devices, for instance for genome sequencing [19,20] and polymer filtration [21–24]. In contrast to
rigid particles, polymers are characterized by their many internal degrees of freedom and inherent
flexibility, which can lead to strong deformation under flow [25,26]. A considerable amount of
research has been conducted on the microrheology of fully flexible linear polymers, due to their
rather simple architecture. Under Poiseuille flow, the chains move away from the channel center
because of their position-dependent conformation and mobility (coiled in the center and stretched
close to the walls), and are pushed away from the channel walls due to wall-induced hydrodynamic
lift forces [27–29]. However, flexible linear polymers represent only a small subset of existing
and conceivable macromolecules, and thus further research is necessary to elucidate the effects of,
e.g., polymer architecture [21–24,30–33] and stiffness [34–38].

Star polymers, i.e., macromolecules consisting of f chains of length p attached to a common
center, are particularly interesting, since they allow an almost continuous change from a flexible linear
polymer to a spherical colloid with soft pair interactions [39–43]. (Hence, star polymers are often
referred to as ultrasoft colloids). Owing to their macromolecular architecture, star polymers exhibit a
strongly non-uniform core-corona morphology, which makes them promising candidates for various
applications such as catalysis [44], photonics [45], and drug delivery [46]. Previous non-equilibrium
studies of star polymers have focused on, e.g., the response to shear flow [30,31,47], the translocation
through nanopores [48,49], and the sedimentation behavior under dilute conditions [50]. In this work,
we are studying the behavior of single stars as well as of dilute mixtures of stars with different number
of arms under Poiseuille flow. In particular, we are interested in the cross-stream migration of the
macromolecules, and whether polymers can be separated spatially based on their architecture.

To establish a connection between the shape of star polymers and their flow properties, we carried
out molecular dynamics (MD) simulations. Here, we modeled the polymers using a generic
bead-spring description in order to focus on the general physical mechanisms, instead of replicating a
specific polymer chemistry. Hydrodynamic interactions (HI) were incorporated using the multi-particle
collision dynamics (MPCD) algorithm.

The rest of this manuscript is organized as follows. In Section 2, we present briefly the employed
model and simulation method. In Section 3.1 we discuss first the flow behavior of single polymers at
infinite dilution, and then discuss in Section 3.2 the results for polymer mixtures at finite concentration.
Finally, we draw our conclusions and present our outlook in Section 4.

2. Model and Simulation Method

To study the dynamics of chain and star polymers under pressure driven flow, we combine
standard MD simulations with the MPCD algorithm. This hybrid approach allows for taking into
account long-ranged hydrodynamics in a physically accurate and computationally efficient way.
We describe the dispersed macromolecules using a generic bead-spring model. In this representation,
each star polymer consists of f linear chains with p beads each (often referred to as “arms”), which are
attached to a common central particle (linear chains can be considered as star polymers with f = 2).
Thus, a polymer consists of N = f p + 1 monomeric units in total. Each spherical bead has a diameter
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of σ, and the excluded volume interactions between the monomers are modeled through the purely
repulsive Weeks-Chandler-Andersen (WCA) potential [51]

UWCA(r) =

4ε
[(

σ
r
)12 −

(
σ
r
)6
]
+ ε, r ≤ 21/6σ

0, r > 21/6σ,
(1)

where r = |rj − ri| is the distance between particles i and j. The parameter ε controls the strength of
the repulsion and has been set to kBT.

The connection between consecutive monomers within a polymer is described by the finitely
extensible nonlinear elastic (FENE) potential [52]

UFENE(r) = −
1
2

kr2 ln

[
1− r2

r2
0

]
(2)

With the spring constant k and maximum bond length r0. To prevent unphysical bond crossing,
we have chosen k = 30 ε/σ2 and r0 = 1.5 σ [53]. With these parameters, the equilibrium bond length is
b ≈ 0.97 σ.

All simulations are carried out in a slit-like channel with dimensions Lx = 40 σ in the gradient
direction, Ly = 40 σ in the vorticity direction, and Lz = 50 σ in the flow direction (see Figure 1 for a
schematic representation of the channel geometry). Channel walls are modeled as infinitely extended
smooth planes located at x = ±Lx/2, which interact with the monomers through a purely repulsive
potential along the wall normal [21].

X

 ZY

Figure 1. Schematic representation of the channel geometry and resulting flow profile.

In MPCD, solvent particles are modeled as ideal point particles with unit mass m = 1, and their
motion is governed by alternating streaming and collision steps [54,55]. During the streaming
step, the solvent particles move ballistically for a time ∆tMPCD. In the collision step, all solvent
particles are first sorted into cubic cells of edge length a, which sets the length scale over which
hydrodynamics are resolved [56]. Then, particles within the same cell exchange momentum through
a stochastic collision, while conserving linear momentum on both the cellular and global level.
In this work, we used an Andersen thermostat (MPCD-AT) collision scheme [57], which also acts
as the thermostat in our simulations. The interaction between monomers and solvent particles is
realized by including the monomers in the MPCD collision step. Cells were shifted before each
collision by a random three-dimensional vector with components drawn uniformly on [−a/2,+a/2]
to ensure Galilean invariance [58]. To enforce no-slip boundary conditions at the channel walls,
we employed a bounce-back rule at the walls, and filled the cells that are intersected by the walls with
virtual solvent particles [59]. Poiseuille flow was achieved by applying a body force g to all solvent
particles [21,24,57,60,61].

The equation of motion for the dispersed solute particles is integrated using the standard velocity
Verlet algorithm [62], with MD time step ∆tMD = 2× 10−3τMD measured in the reduced unit of time
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τMD =
√

mσ2/(kBT). The time step for the MPCD algorithm was set to ∆tMPCD = 0.1, i.e., a stochastic
collision was performed every 50 MD steps. The cell size was set to a = σ and the number density of
solvent particles was set to ρs = 5 σ−3. The mass of the monomers was set to M = 5 m. With these
parameters, the pure MPCD solvent has a dynamic zero-shear viscosity of ηs = 3.71 and a Schmidt
number of Sc = 8 [38], which is consistent with a liquid-like solvent [63]. Simulations were conducted
up to 105 τMD, and we ensured that the systems reached a steady state before taking measurements.
For every set of parameters, we conducted five independent runs to improve sampling and to calculate
error bars. Due to the symmetry of the channel geometry, we consider only absolute displacements
from the center line x = 0 to improve sampling. Further, if not stated otherwise explicitly, we will use
σ as our unit of length, kBT as our unit of energy, and τMD as our unit of time. Simulations without
hydrodynamics were performed using HOOMD-blue (version 2.2.4) [64–66].

3. Results and Discussion

3.1. Ultradiulte Conditions

In the first part of this work, we studied the flow behavior of single star polymers at infinite
dilution for various arm numbers f . Here, we tuned the arm length p (and thus the total number of
monomer N) so that, in an unconfined system, the polymers have roughly the same radius of gyration
Rg ≈ 4.2 at each value of f . In particular, we studied linear chains with N = 40 monomers, and star
polymers with f = 18 (N = 181) and f = 30 (N = 271).

Under quiescent conditions, the spatial distribution of the polymer center of mass (CM) between
the channel walls, Pcm(x), is almost uniform, except for a narrow region of width ≈Rg close to the
channel walls (see Figure 2a). Note that the transition of Pcm(x) near the walls becomes significantly
sharper with increasing f , since the interior of the polymers is packed more compactly with the
constituent monomers, and thus it is more difficult to deform the macromolecule [43,67,68]. (For a
completely hard colloid, Pcm(x) is a step function). To quantify the shape of the polymers, we computed
the radius of gyration tensor

G2
αβ =

1
N − 1 ∑

i

(
∆ri,α∆ri,β

)2 , (3)

where ∆ri,α is the position of monomer i relative to the polymer CM, while α and β are the
components along the Cartesian x, y, and z direction. The polymer radius of gyration is then given by
R2

g = G2
xx + G2

yy + G2
zz. Figure 2b shows Gxx between the channel walls, and it is clear that in the

channel center Gxx is independent of f and has the same value as in unconfined systems. When the
polymer CM approaches the walls, however, Gxx decreases drastically for the linear chains ( f = 2),
whereas this effect is much weaker for the star polymers.

When a constant body force g is applied to the liquid along the z-direction, then a steady flow
develops as a result of the balance between acceleration in the channel center and friction at the channel
walls. Due to the low polymer concentration, the dispersion behaves essentially like a Newtonian
liquid with shear viscosity η = ηs, and the resulting velocity profile is parabolic

vz(x) =
g

2ν

(
L2

x
4
− x2

)
(4)

where ν = η/ρ is the kinematic viscosity of the liquid. The velocity profile has its maximum vmax in
the channel center (x = 0) and becomes zero at the channel walls (x = ±Lx/2). The parabolic shape
of vz(x) leads to a locally varying shear rate γ̇(x) = dvz(x)/dx = −gx/ν, which is maximum at the
channel walls and vanishes in the channel center. We can estimate the average shear rate in the system
by 〈γ̇〉 ≈ 2vmax/Lx. To facilitate the comparison with experiments and other simulations, we will
express the flow strength in terms of the dimensionless particle Reynolds number, Rep = 2vmaxRg/ν,
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which is the ratio between inertial and viscous forces acting on the dispersed polymer. Please note that
this expression is somewhat approximative, as polymers can deform under flow and thus Rg is not
constant. Nevertheless, this quantity provides a reasonable measure for estimating the onset of inertial
flow effects (Rep & 1) [24,27].
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Figure 2. (a) Center of mass probability distribution normal to the channel walls, Pcm(x), for various
arm numbers f at rest; (b) Component of the radius of gyration tensor normal to the walls (Gxx) as a
function of center of mass distance x. In both panels, the shaded regions around the curves indicate
our measurement uncertainty. The dotted vertical lines indicate the excluded regions of width Rg near
the channel walls.

In Figure 3, we have plotted how the CM distribution of the polymers, Pcm(x), changes under
flow. As Rep is increased, both the chains ( f = 2) and stars ( f = 30) move away from the channel walls,
due to the wall-induced asymmetry in the wake vorticity field of the dispersed polymers [27,28,36,37].
This cross-stream migration is significantly more pronounced for the star polymers compared to the
linear ones, as the former contain almost seven times as many monomers (N = 271 vs. N = 40),
and thus disturb the flow field to a greater extent. Further note that Pcm(x) develops a distinct dip near
the channel center at the highest investigated flow rates, Rep = 6, for the chains as well as the stars.
This partial evacuation of the centerline originates from the nonuniform shear field γ̇(x), which leads
to a position-dependent polymer deformation (see Figure 4 below) and a subsequent gradient in
the chain mobility [27,28,36,37]. Star polymers with f = 18 arms exhibit an intermediate behavior,
and have been omitted from Figures 3 and 4 for the sake of clarity.

Shear deformation of the dispersed polymers occurs typically when γ̇ exceeds the inverse
of the longest characteristic relaxation time, τ−1

c (or, equivalently, when the Weissenberg number
Wi ≡ γ̇τc & 1) [25,30–32,38,69,70]. For linear chains in dilute solutions, τc is essentially given
by the slowest Zimm relaxation mode, i.e., τc = τ0N3ν with τ0 = ηsb3/(kBT) and Flory exponent
ν ≈ 3/5 [25,71]. For star polymers, a similar calculation for the blob model leads to the expression
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τc = τ0 p3ν f 1−3ν/2 [72], which has been verified through simulations [30] for the range of star sizes
investigated here. One interesting result of these theoretical considerations is that a star relaxes of
order f−1/2 faster than a linear chain of the same overall Rg [72]. For the polymers investigated in this
work, we estimate τc = 2600 (linear chain), τc = 285 ( f = 18, p = 10), and τc = 250 ( f = 30, p = 9).
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Figure 3. Center of mass probability distribution normal to the channel walls, Pcm(x), for a chain (left)
and a star with f = 30 arms (right) at various flow strengths Rep, as indicated.
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Figure 4. Components of the radius of gyration tensor along (a) the gradient and (b) the flow direction
vs. the polymer CM position x. Data shown for a chain (left) and a star with f = 30 arms (right) at
various flow strengths Rep, as indicated.
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To investigate the flow-induced deformation of the polymers, we have plotted in Figure 4 the
components of the radius of gyration tensor along the gradient and flow direction, Gxx and Gzz,
respectively, as a function of the polymer CM position between the walls x. (The size along the
vorticity direction, Gyy, changed only marginally and therefore has been omitted for the sake of
brevity.) Here, we can see that Gxx in the channel center is almost independent of Rep, but then
decreases gradually as the polymer CM approaches the high γ̇ region close to the channel walls.
Further, it is clear that, at a fixed CM distance, Gxx drops with increasing flow strength since γ̇ ∝ Rep.
At the same time, the extension along the flow direction, Gzz, increases significantly both with distance
to the centerline and flow strength. Comparing the Gαα data for the chains and stars, it is clear
that the flow-induced deformation is much more pronounced for the linear species. This finding
can be rationalized by realizing that the characteristic relaxation time of the chain is approximately
one order of magnitude slower than of the star (see discussion above). Further, even for Wi � 1,
the compact structure of star polymers prevents full extension along the flow direction, as the arms
would significantly overlap in such a scenario.

In Figure 5 we have plotted the x and z components of the radius of gyration tensor averaged
over the entire channel, 〈Gxx〉 and 〈Gzz〉, respectively, as a function of Rep. Here, we can see that the
average extension along the flow direction, 〈Gzz〉, is much more pronounced for the linear polymers
compared to the star polymers, which exhibit only weak stretching. (The theoretical maximum of
Gzz for sheared linear polymers is on the order of half the chain contour length [35]). A similar trend
can be observed for the average contraction in the gradient direction, 〈Gxx〉, which is significantly
more expressed for the chains than for the stars. Thus, in this context, the star polymers resemble
progressively rigid colloids as the number of arms f is increased. These findings can be explained
by considering the average Weissenberg number 〈Wi〉 ≡ τc 〈γ̇〉, for which we find 〈Wi〉 ≈ 70 for the
chains and 〈Wi〉 ≈ 6.6 for the stars ( f = 30) at Rep = 6.
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Figure 5. Components of the radius of gyration tensor averaged over the entire channel vs. flow
strength Rep, normalized by the value at rest. Dashed lines show component in flow direction, 〈Gzz〉,
and solid lines show component in gradient direction, 〈Gxx〉.

Based on previously established similarities between the elasticity of polymeric nanoparticles and
deformable droplets at rest [43], it is tempting to also draw analogies for the flow-induced migration
of the two species. Previous analytical models of droplets in the Stokes regime (Re � 1) predict
that migration to the channel center should occur if the ratio of viscosities of the suspended phase
and of the surrounding fluid is either smaller than 0.5 or larger than 10 [73,74]. In between these
ratios, the droplets are predicted to move away from the centerline. However, recent simulations
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of deformable droplets in the inertial flow regime (Re & 1) have also found migration towards the
centerline for viscosity ratios from unity to 13 [75]. Further, it was shown that these lift forces increase
with increasing droplet deformability [75,76].

Applying those findings to the macromolecular particles studied here, one could then expect that
the higher deformability of the linear chains should lead to stronger lift forces towards the channel
center compared to the stars. This situation is, however, clearly not the case here as evidenced by the
probability distribution Pcm(x) shown Figure 3. One possible explanation for this discrepancy could
be that the solvent can (partially) flow through the polymers, whereas the droplets are completely
impermeable. Further, the dynamics of polymers are governed by a hierarchy of relaxation times,
originating from the many internal degrees of freedom.

We instead hypothesize that the cross-stream migration observed for the polymers stems from
wall-induced hydrodynamic lift forces, which are more pronounced for the denser star polymers
compared to the chains. To test this hypothesis, we conducted additional simulations where we
switched off HI by employing a Langevin thermostat. At rest, the polymer distribution Pcm(x) looks
identical to the data shown in Figure 2, as expected, since hydrodynamics do not affect the static
properties at equilibrium. Flow was then applied to the system by superimposing a velocity profile
with the same parabolic shape and amplitude as in our previous explicit solvent simulations. Here we
found that the polymer distribution Pcm(x) was identical for all values of Rep, i.e., no cross-stream
migration occurred in the simulations without hydrodynamics. This behavior can be rationalized by
considering that the interaction matrix, relating the forces acting on the beads and their velocities,
is diagonal when hydrodynamics are neglected; in this scenario, the motion along the individual
directions (x, y and z) is fully decoupled and the underlying equations of motion can be solved
independently. Hence, we can conclude that the cross-stream migration displayed in Figure 3 originates
from hydrodynamic lift forces.

3.2. Polymer Mixtures

Our simulation results under ultradilute conditions revealed that the cross-stream migration
behavior of polymers depends on their number of arms f (and thus their deformability),
where polymers moved more and more towards the channel center with increasing f . This finding
suggests the possibility of separating mixtures of polymers with different f via Poiseuille flow. To test
this idea, we first prepared mixtures containing N2 = 13 chains ( f = 2) and N30 = 13 stars ( f = 30).
This choice leads to a volume fraction of Φ = 4πR3

g(N2 + N30)/(3V) ≈ 0.1, i.e., the system is still in
the dilute regime (note that Rg ≈ 4.2 for all investigated values of f ).

Figure 6 shows the probability distribution of the polymer CM between the channel walls, Pcm(x).
At rest, the chains are uniformly distributed across the channel, similar to the case at infinite dilution
(cf. Figure 2a). The stars, however, are not anymore uniformly distributed, but exhibit a distinct
layering near the walls. This ordering is due to the fact that the effective interactions between star
polymers become progressively hard-sphere like with increasing f [67,68]; for such (almost) hard
spheres, ordered structures near a flat wall result from the excluded volume interactions both within
the particles and against the confining wall [77–80].

When flow is applied, the star polymers vacate the region near the walls and migrate to the
channel center, as evidenced by the distinct peak at x = 0 shown in Figure 6b. We can identify two
additional, slightly smaller peaks near the centerline at x ≈ ±2Rg, which stem from the saturation of
the centerline. At the same time, the linear polymers are largely expelled from the channel center and
fill the region near the walls, where they attain a rather stretched out conformation. In principle, this
clear spatial separation of chains and stars under flow allows for a straight-forward separation of the
two species.

To elucidate the origin of this flow-induced separation, we again conducted simulations without
HI. At rest, we find the exact same distribution as shown in Figure 6a, as expected. When flow is
applied, we observe a qualitatively similar partial focusing of star polymers to the centerline with
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some differences (cf. Figures 6b,c): when HI are switched off, the chain distribution is somewhat
more homogeneous and the two off-center peaks in the star distribution move now closer to the
walls. The fact that flow influences the lateral distribution of polymers in the mixtures without HI
(in contrast to the infinitely dilute systems discussed in Section 3.1) provides crucial insights to the
responsible separation mechanism: the non-uniform shear field γ̇(x) leads to a more pronounced
stretching of the chains near the walls (see Figure 4b), which thereby push the less deformable stars to
the channel center. This effect is somewhat more pronounced in the simulations with HI, likely due to
wall-induced hydrodynamic lift forces. We note that this behavior is reminiscent of the viscoelastic
focusing of rigid colloids in polymer solutions [7,60,61]. However, the mass fraction of linear polymer
in the present simulations is somewhat smaller (0.65%) than the typical values of 1–10% used in
previous simulations [60,61] and experiments [6,7], which might explain the less pronounced focusing
observed here.
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Figure 6. Center of mass probability distribution normal to the channel walls, Pcm(x), for a mixture of
chains ( f = 2) and stars ( f = 30) at (a) rest (Rep = 0) and (b) under flow (Rep = 6). Panel (c) shows the
system under flow (Rep = 6), but with hydrodynamic interactions switched off. The volume fraction
of polymers is fixed to Φ = 0.1 in all simulations.

To explore whether this setup can also be used to separate stars with different numbers of arms,
we repeated our simulations for a mixture of N18 = 13 and N30 = 13 stars with f = 18 and f = 30
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arms, respectively. The volume fraction is again Φ ≈ 0.1. Figure 7a shows the equilibrium distribution
of the stars between the walls, Pcm(x), and we can see again that the less deformable species ( f = 30)
occupies the central channel region, whereas the softer particles ( f = 18) are pushed closer to the
walls. Here, we can identify a distinct layering of the stars, which is more pronounced compared to
the star-chain mixtures due to stronger excluded volume effects.

Under Poiseuille flow, stars with f = 18 as well as f = 30 arms move somewhat closer to the
channel center, and the lateral layering is slightly smeared out (see Figure 7b). However, in contrast
to the star-chain mixtures, there is no obvious spatial partitioning between the different star species
which could be exploited for particle separation. When hydrodynamics are switched off, the lateral
polymer distribution, Pcm(x), becomes slightly broader due to the lack of wall-induced hydrodynamic
lift forces, but the overall behavior is qualitatively similar. The less pronounced flow-induced focusing
in the star-star mixtures can thus be attributed to the weaker viscoelastic forces exerted by the stars
compared to the chains.
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Figure 7. Center of mass probability distribution normal to the channel walls, Pcm(x), for a mixture
of stars with f = 18 and f = 30 arms at (a) rest (Rep = 0) and (b) under flow (Rep = 6). Panel (c)
shows the system under flow (Rep = 6), but with hydrodynamic interactions switched off. The volume
fraction of polymers is fixed to Φ = 0.1 in all simulations.
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For achieving a connection between our simulations and experiments beyond a comparison of
dimensionless quantities (such as the Reynolds and Weissenberg number), it is required to establish a
mapping between the units of energy, length and time. For the energy scale, we chose the thermal
energy ε = kBT, which at room temperature (Troom = 298 K) is ε = 4.11× 10−21 J. For the length
scale, we map our linear polymers to poly(ethylene oxide) (PEO) chains with molecular weight
M = 4000 kg/mol, as used in previous viscoelastic focusing experiments [7]. The radius of gyration
of PEO chains in water can be estimated via Rg = 0.215M0.583 , with molecular weight M given in
g/mol [81]. Thus, Rg ≈ 150 nm which leads to a conversion factor of σ ≈ 36 nm. (Please note that this
mapping is rather crude, since roughly 2270 monomers are represented by a single bead, and thus
the employed WCA excluded volume interactions between beads are likely too hard.) For the time
scale, we matched the long-time diffusion coefficient D of a single chain at dilute conditions. In the
simulations we find D ≈ 0.0045σ2/τMD [38]. The diffusion coefficient of the experimental system
can be estimated via D = kBT/(6πηsRh) with hydrodynamic radius Rh. Using ηs = 0.89 cP for water
at room temperature and Rh ≈ 85 nm [81], we find D ≈ 2.9× 10−8 cm2/s and thus τMD ≈ 2.0µs.
Using these conversion factors, our channels have a width of L ≈ 1.5µm and the maximum fluid
velocity is vmax ≈ 1 cm/s at Rep = 6. Such velocities can be achieved in a slit channel by applying a
pressure drop of 100 kPa over a channel length of 3 mm. Flow-induced partitioning occurred in the
star-chain mixtures within the simulation time (approximately 0.2 s), which corresponds to a traveled
distance of roughly 2 mm at the highest employed flow strength. This distance is smaller than the
channel length, and thus we expect that flow-induced separation of star and chain polymers should in
principle be possible in experiments.

4. Conclusions

We performed explicit solvent molecular dynamics simulations of single chains, stars, and their
mixtures under Poiseuille flow, and explored their conformation and cross-stream migration. We found
that at infinite dilution, star polymer experienced stronger lift forces to the channel center compared
to their linear counterparts with the same equilibrium radius of gyration. By conducting additional
simulations without hydrodynamics, we identified wall-induced hydrodynamic lift forces as the
mechanism responsible for this lateral motion.

In the star-chain mixtures, we observed an even more pronounced spatial separation of the two
species, where the stars occupied the central channel region and the more deformable chains moved
closer to the channel walls. In contrast, the flow-induced demixing of star-star mixtures was much less
pronounced. In principle, such flow-induced partitioning can be exploited to filter polymers based
on their architecture. Our simulations indicate that the spatial separation in the polymer mixtures
stems from a combination of wall-induced hydrodynamic lift forces and viscoelastic forces originating
from the linear chains. Hence, the phenomena observed here appear to be more closely related to the
viscoelastic focusing of (rigid) colloids than to the deformation-induced lift of elastic capsules.
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Abbreviations

The following abbreviations are used in this manuscript:

CM Center of mass
FENE Finitely extensible nonlinear elastic
HI Hydrodynamic interactions
MD Molecular Dynamics
MPCD Multi-particle collision dynamics
PDMS Polydimethylsiloxane
PEO Poly(ethylene oxide)
WCA Weeks-Chandler-Andersen
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