Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
Autoren: Gröschel, Sonja
Lange, Björn
Grond, Martin
Jauss, Jan Marek
Kirchhof, Paulus
Rostock, Thomas
Wachter, Rolf
Gröschel, Klaus
Uphaus, Timo
Titel: Automatic Holter electrocardiogram analysis in ischaemic stroke patients to detect paroxysmal atrial fibrillation : ready to replace physicians?
Online-Publikationsdatum: 16-Aug-2021
Erscheinungsdatum: 2020
Sprache des Dokuments: Englisch
Zusammenfassung/Abstract: BACKGROUND AND PURPOSE The detection of paroxysmal atrial fibrillation (pAF) in patients presenting with ischaemic stroke shifts secondary stroke prevention to oral anticoagulation. In order to deal with the time- and resource-consuming manual analysis of prolonged electrocardiogram (ECG)-monitoring data, we investigated the effectiveness of pAF detection with an automated algorithm (AA) in comparison to a manual analysis with software support within the IDEAS study [study analysis (SA)]. METHODS We used the dataset of the prospective IDEAS cohort of patients with acute ischaemic stroke/transient ischaemic attack presenting in sinus rhythm undergoing prolonged 72-h Holter ECG with central adjudication of atrial fibrillation (AF). This adjudicated diagnosis of AF was compared with a commercially available AA. Discordant results with respect to the diagnosis of pAF were resolved by an additional cardiological reference confirmation. RESULTS Paroxysmal AF was finally diagnosed in 62 patients (5.9%) in the cohort (n = 1043). AA more often diagnosed pAF (n = 60, 5.8%) as compared with SA (n = 47, 4.5%). Due to a high sensitivity (96.8%) and negative predictive value (99.8%), AA was able to identify patients without pAF, whereas abnormal findings in AA required manual review (specificity 96%; positive predictive value 60.6%). SA exhibited a lower sensitivity (75.8%) and negative predictive value (98.5%), and showed a specificity and positive predictive value of 100%. Agreement between the two methods classified by kappa coefficient was moderate (0.591). CONCLUSION Automated determination of ‘absence of pAF’ could be used to reduce the manual review workload associated with review of prolonged Holter ECG recordings.
DDC-Sachgruppe: 610 Medizin
610 Medical sciences
Veröffentlichende Institution: Johannes Gutenberg-Universität Mainz
Organisationseinheit: FB 04 Medizin
Veröffentlichungsort: Mainz
Version: Published version
Publikationstyp: Zeitschriftenaufsatz
Nutzungsrechte: CC BY-NC-ND
Informationen zu den Nutzungsrechten:
Zeitschrift: European journal of neurology
Seitenzahl oder Artikelnummer: 1272
Verlag: Wiley-Blackwell
Verlagsort: Oxford u.a.
Erscheinungsdatum: 2020
ISSN: 1468-1331
URL der Originalveröffentlichung:
DOI der Originalveröffentlichung: 10.1111/ene.14250
Enthalten in den Sammlungen:JGU-Publikationen

Dateien zu dieser Ressource:
  Datei Beschreibung GrößeFormat
gröschel_s.-automatic_holt-20210816113427751.pdf705.57 kBAdobe PDFÖffnen/Anzeigen