Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-5926
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNguyen, Vu Thu Thuy-
dc.contributor.authorSallbach, Jason-
dc.contributor.authorSantos Guilherme, Malena dos-
dc.contributor.authorEndres, Kristina-
dc.date.accessioned2021-05-31T09:29:01Z-
dc.date.available2021-05-31T09:29:01Z-
dc.date.issued2021-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/5935-
dc.description.abstractFour drugs are currently approved for the treatment of Alzheimer’s disease (AD) by the FDA. Three of these drugs—donepezil, rivastigmine, and galantamine—belong to the class of acetylcholine esterase inhibitors. Memantine, a NMDA receptor antagonist, represents the fourth and a combination of donepezil and memantine the fifth treatment option. Recently, the gut and its habitants, its microbiome, came into focus of AD research and added another important factor to therapeutic considerations. While the first data provide evidence that AD patients might carry an altered microbiome, the influence of administered drugs on gut properties and commensals have been largely ignored so far. However, the occurrence of digestive side effects with these drugs and the knowledge that cholinergic transmission is crucial for several gut functions enforces the question if, and how, this medication influences the gastrointestinal system and its microbial stocking. Here, we investigated aspects such as microbial viability, colonic propulsion, and properties of enteric neurons, affected by assumed intestinal concentration of the four drugs using the mouse as a model organism. All ex vivo administered drugs revealed no direct effect on fecal bacteria viability and only a high dosage of memantine resulted in reduced biofilm formation of E. coli. Memantine was additionally the only compound that elevated calcium influx in enteric neurons, while all acetylcholine esterase inhibitors significantly reduced esterase activity in colonic tissue specimen and prolonged propulsion time. Both, acetylcholine esterase inhibitors and memantine, had no effect on general viability and neurite outgrowth of enteric neurons. In sum, our findings indicate that all AD symptomatic drugs have the potential to affect distinct intestinal functions and with this—directly or indirectly—microbial commensals.en_GB
dc.description.sponsorshipOpen Access-Publizieren Universität Mainz / Universitätsmedizin Mainzde
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc570 Biowissenschaftende_DE
dc.subject.ddc570 Life sciencesen_GB
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.titleInfluence of acetylcholine esterase inhibitors and memantine, clinically approved for Alzheimer’s dementia treatment, on intestinal properties of the mouseen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-5926-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 04 Medizinde
jgu.organisation.number2700-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleInternational journal of molecular sciencesde
jgu.journal.volume22de
jgu.journal.issue3de
jgu.pages.alternative1015de
jgu.publisher.year2021-
jgu.publisher.nameMolecular Diversity Preservation Internationalde
jgu.publisher.placeBaselde
jgu.publisher.urihttps://doi.org/10.3390/ijms22031015de
jgu.publisher.issn1422-0067de
jgu.publisher.issn1661-6596de
jgu.organisation.placeMainz-
jgu.subject.ddccode570de
jgu.subject.ddccode610de
jgu.publisher.doi10.3390/ijms22031015
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
nguyen_vu_thu_thuy-influence_of_a-20210514141847024.pdf567.18 kBAdobe PDFView/Open