Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-5586
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLebrun, Romain-
dc.contributor.authorRoss, Andrew-
dc.contributor.authorGomonay, Olena-
dc.contributor.authorBaltz, V.-
dc.contributor.authorEbels, U.-
dc.contributor.authorBarra, A.-L.-
dc.contributor.authorQaiumzadeh, Alireza-
dc.contributor.authorBrataas, Arne-
dc.contributor.authorSinova, Jairo-
dc.contributor.authorKläui, Mathias-
dc.date.accessioned2021-02-11T09:52:41Z-
dc.date.available2021-02-11T09:52:41Z-
dc.date.issued2020-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/5590-
dc.description.abstractAntiferromagnetic materials can host spin-waves with polarizations ranging from circular to linear depending on their magnetic anisotropies. Until now, only easy-axis anisotropy antiferromagnets with circularly polarized spin-waves were reported to carry spin-information over long distances of micrometers. In this article, we report long-distance spin-transport in the easy-plane canted antiferromagnetic phase of hematite and at room temperature, where the linearly polarized magnons are not intuitively expected to carry spin. We demonstrate that the spin-transport signal decreases continuously through the easy-axis to easy-plane Morin transition, and persists in the easy-plane phase through current induced pairs of linearly polarized magnons with dephasing lengths in the micrometer range. We explain the long transport distance as a result of the low magnetic damping, which we measure to be <= 10(-5) as in the best ferromagnets. All of this together demonstrates that long-distance transport can be achieved across a range of anisotropies and temperatures, up to room temperature, highlighting the promising potential of this insulating antiferromagnet for magnon-based devices. Hitherto, only circularly polarized antiferromagnetic (AFM) spin-waves (SWs) were expected to convey spin-information. Here, the authors present persistent spin-transport over long distances in the easy-plane AFM phase of hematite, alpha -Fe2O3, via linearly polarized SW pairs with ultra-low damping.en_GB
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleLong-distance spin-transport across the Morin phase transition up to room temperature in ultra-low damping single crystals of the antiferromagnet alpha-Fe2O3en_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-5586-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleNature Communicationsde
jgu.journal.volume11de
jgu.pages.alternative6332de
jgu.publisher.year2020-
jgu.publisher.nameNature Publishing Group UKde
jgu.publisher.placeLondonde
jgu.publisher.urihttps://doi.org/10.1038/s41467-020-20155-7de
jgu.publisher.issn2041-1723de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.publisher.doi10.1038/s41467-020-20155-7
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
lebrun_romain-long-distance_-20210210154445430.pdf921.3 kBAdobe PDFView/Open