Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://doi.org/10.25358/openscience-5586
Autoren: | Lebrun, Romain Ross, Andrew Gomonay, Olena Baltz, V. Ebels, U. Barra, A.-L. Qaiumzadeh, Alireza Brataas, Arne Sinova, Jairo Kläui, Mathias |
Titel: | Long-distance spin-transport across the Morin phase transition up to room temperature in ultra-low damping single crystals of the antiferromagnet alpha-Fe2O3 |
Online-Publikationsdatum: | 11-Feb-2021 |
Erscheinungsdatum: | 2020 |
Sprache des Dokuments: | Englisch |
Zusammenfassung/Abstract: | Antiferromagnetic materials can host spin-waves with polarizations ranging from circular to linear depending on their magnetic anisotropies. Until now, only easy-axis anisotropy antiferromagnets with circularly polarized spin-waves were reported to carry spin-information over long distances of micrometers. In this article, we report long-distance spin-transport in the easy-plane canted antiferromagnetic phase of hematite and at room temperature, where the linearly polarized magnons are not intuitively expected to carry spin. We demonstrate that the spin-transport signal decreases continuously through the easy-axis to easy-plane Morin transition, and persists in the easy-plane phase through current induced pairs of linearly polarized magnons with dephasing lengths in the micrometer range. We explain the long transport distance as a result of the low magnetic damping, which we measure to be <= 10(-5) as in the best ferromagnets. All of this together demonstrates that long-distance transport can be achieved across a range of anisotropies and temperatures, up to room temperature, highlighting the promising potential of this insulating antiferromagnet for magnon-based devices. Hitherto, only circularly polarized antiferromagnetic (AFM) spin-waves (SWs) were expected to convey spin-information. Here, the authors present persistent spin-transport over long distances in the easy-plane AFM phase of hematite, alpha -Fe2O3, via linearly polarized SW pairs with ultra-low damping. |
DDC-Sachgruppe: | 530 Physik 530 Physics |
Veröffentlichende Institution: | Johannes Gutenberg-Universität Mainz |
Organisationseinheit: | FB 08 Physik, Mathematik u. Informatik |
Veröffentlichungsort: | Mainz |
ROR: | https://ror.org/023b0x485 |
DOI: | http://doi.org/10.25358/openscience-5586 |
Version: | Published version |
Publikationstyp: | Zeitschriftenaufsatz |
Weitere Angaben zur Dokumentart: | Scientific article |
Nutzungsrechte: | CC BY |
Informationen zu den Nutzungsrechten: | https://creativecommons.org/licenses/by/4.0/ |
Zeitschrift: | Nature Communications 11 |
Seitenzahl oder Artikelnummer: | 6332 |
Verlag: | Nature Publishing Group UK |
Verlagsort: | London |
Erscheinungsdatum: | 2020 |
ISSN: | 2041-1723 |
URL der Originalveröffentlichung: | https://doi.org/10.1038/s41467-020-20155-7 |
DOI der Originalveröffentlichung: | 10.1038/s41467-020-20155-7 |
Enthalten in den Sammlungen: | JGU-Publikationen |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | ||
---|---|---|---|---|---|
![]() | lebrun_romain-long-distance_-20210210154445430.pdf | 921.3 kB | Adobe PDF | Öffnen/Anzeigen |