Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-5558
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchönke, Daniel-
dc.contributor.authorReeve, Robert M.-
dc.contributor.authorStoll, Hermann-
dc.contributor.authorKläui, Mathias-
dc.date.accessioned2021-01-21T09:43:38Z-
dc.date.available2021-01-21T09:43:38Z-
dc.date.issued2020-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/5562-
dc.description.abstractFor viable applications, spintronic devices based, for example, on domain wall motion need to be highly reliable with stable magnetization states and highly reproducible switching pathways transforming one state to another. The existence of multiple stable states and switching pathways in a system is a definitive barrier for device operation, yet rare and stochastic events are difficult to detect and understand. We demonstrate an approach to quantify competing magnetic states and stochastic switching pathways based on time-resolved scanning electron microscopy with polarization analysis, applied to the technologically relevant control of vortex domain wall chirality via field and curvature in curved wires. As a pumpprobe technique, our analysis scheme nonetheless allows for the disentanglement of different occurring dynamic pathways, and we can even identify the rare events leading to changes from one magnetization switching pathway to another pathway via temperature- and geometry-dependent measurements. The experimental imaging is supported by micromagnetic simulations to reveal the mechanisms responsible for the change of the pathway. Together the results allow us to explain the origin and details of the domain wall chirality control and to quantify the frequency and the associated energy barriers of thermally activated changes of the states and switching pathways.en_GB
dc.language.isoengde
dc.rightsInCopyright*
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/?language=en*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleQuantification of competing magnetic states and switching pathways in curved nanowires by direct dynamic imagingen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-5558-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionAccepted versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleACS nanode
jgu.journal.volume14de
jgu.journal.issue10de
jgu.pages.start13324de
jgu.pages.end13332de
jgu.publisher.year2020-
jgu.publisher.nameSoc.de
jgu.publisher.placeWashington, DCde
jgu.publisher.urihttps://doi.org/10.1021/acsnano.0c05164de
jgu.publisher.issn1936-0851de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.publisher.doi10.1021/acsnano.0c05164
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
schönke_daniel-quantification-20210113145158156.pdf4.21 MBAdobe PDFView/Open