Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-5403
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZázvorka, Jakub-
dc.contributor.authorDittrich, Florian-
dc.contributor.authorGe, Yuqing-
dc.contributor.authorKerber, Nico-
dc.contributor.authorRaab, Klaus-
dc.contributor.authorWinkler, Thomas-
dc.contributor.authorLitzius, Kai-
dc.contributor.authorVeis, Martin-
dc.contributor.authorVirnau, Peter-
dc.contributor.authorKläui, Mathias-
dc.date.accessioned2020-11-30T10:24:02Z-
dc.date.available2020-11-30T10:24:02Z-
dc.date.issued2020-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/5407-
dc.description.abstractPhases of matter are ubiquitous with everyday examples including solids and liquids. In reduced dimensions, particular phases, such as the 2D hexatic phase and corresponding phase transitions occur. A particularly exciting example of 2D ordered systems are skyrmion lattices, where in contrast to previously studied 2D colloid systems, the skyrmion size and density can be tuned by temperature and magnetic fields. This allows for the system to be driven from a liquid phase to the onset of a hexatic phase as deduced from the analysis of the hexagonal order. Using coarse-grained molecular dynamics simulations of soft disks, the skyrmion interaction potentials are determined, and it is found that the simulations are able to reproduce the phase behavior. This shows that not only the static behavior of skyrmions is qualitatively well described in terms of a simple 2D model system but skyrmion lattices are versatile and tunable 2D model systems that allow for studying phases and phase transitions in reduced dimensions.en_GB
dc.language.isoengde
dc.rightsCC BY-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleSkyrmion lattice phases in thin film multilayeen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-5403-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleAdvanced functional materialsde
jgu.journal.volume30de
jgu.journal.issue46de
jgu.pages.alternativeArt. 2004037de
jgu.publisher.year2020-
jgu.publisher.nameWiley-VCHde
jgu.publisher.placeWeinheimde
jgu.publisher.urihttps://doi.org/10.1002/adfm.202004037de
jgu.publisher.issn1616-301Xde
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.publisher.doi10.1002/adfm.202004037
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
zázvorka_jakub-skyrmion_latti-20201127133811866.pdf2.08 MBAdobe PDFView/Open