Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://doi.org/10.25358/openscience-5243
Autoren: Wahlen, Andreas
Kuhn, Christiane
Zlatkin-Troitschanskaia, Olga
Gold, Christian
Zesch, Torsten
Horbach, Andrea
Titel: Automated scoring of teachers’ pedagogical content knowledge : a comparison between human and machine scoring
Online-Publikationsdatum: 21-Okt-2020
Sprache des Dokuments: Englisch
Zusammenfassung/Abstract: To validly assess teachers’ pedagogical content knowledge (PCK), performance-based tasks with open-response formats are required. Automated scoring is considered an appropriate approach to reduce the resource-intensity of human scoring and to achieve more consistent scoring results than human raters. The focus is on the comparability of human and automated scoring of PCK for economics teachers. The answers of (prospective) teachers (N = 852) to six open-response tasks from a standardized and validated test were scored by two trained human raters and the engine “Educational SCoRIng Toolkit” (ESCRITO). The average agreement between human and computer ratings, κw = 0.66, suggests a convergent validity of the scoring results. The results of the single-sector variance analysis show a significant influence of the answers for each homogeneous subgroup (students = 460, trainees = 230, in-service teachers = 162) on the automated scoring. Findings are discussed in terms of implications for the use of automated scoring in educational assessment and its potentials and limitations.
DDC-Sachgruppe: 300 Sozialwissenschaften
300 Social sciences
330 Wirtschaft
330 Economics
Veröffentlichende Institution: Johannes Gutenberg-Universität Mainz
Organisationseinheit: FB 03 Rechts- und Wirtschaftswissenschaften
Veröffentlichungsort: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-5243
Version: Published version
Publikationstyp: Zeitschriftenaufsatz
Nutzungsrechte: CC BY
Informationen zu den Nutzungsrechten: https://creativecommons.org/licenses/by/4.0/
Zeitschrift: Frontiers in education
5
Seitenzahl oder Artikelnummer: Art. 149
Verlag: Frontiers Media
Verlagsort: Lausanne
Erscheinungsdatum: 2020
ISSN: 2504-284X
URL der Originalveröffentlichung: https://doi.org/10.3389/feduc.2020.00149
DOI der Originalveröffentlichung: 10.3389/feduc.2020.00149
Enthalten in den Sammlungen:JGU-Publikationen

Dateien zu dieser Ressource:
  Datei Beschreibung GrößeFormat
Miniaturbild
wahlen_andreas-automated_scor-20201021123117590.pdf886.22 kBAdobe PDFÖffnen/Anzeigen