Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-5154
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTries, Alexander-
dc.contributor.authorOsella, Silvio-
dc.contributor.authorZhang, Pengfei-
dc.contributor.authorXu, Fugui-
dc.contributor.authorRamanan, Charusheela-
dc.contributor.authorKläui, Mathias-
dc.contributor.authorMai, Yiyong-
dc.contributor.authorBeljonne, David-
dc.contributor.authorWang, Hai I.-
dc.date.accessioned2020-10-20T09:35:46Z-
dc.date.available2020-10-20T09:35:46Z-
dc.date.issued2020-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/5158-
dc.description.abstractGraphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to similar to 700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of similar to 1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices.en_GB
dc.language.isoengde
dc.rightsInCopyright*
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleExperimental observation of strong exciton effects in graphene nanoribbonsen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-5154-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionAccepted versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleNano lettersde
jgu.journal.volume20de
jgu.journal.issue5de
jgu.pages.start2993de
jgu.pages.end3002de
jgu.publisher.year2020-
jgu.publisher.nameACS Publ.de
jgu.publisher.placeWashington, DCde
jgu.publisher.urihttps://www.doi.org/10.1021/acs.nanolett.9b04816de
jgu.publisher.issn1530-6984de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.publisher.doi10.1021/acs.nanolett.9b04816
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
tries_alexander-experimental_o-20200930085522125.pdf1.01 MBAdobe PDFView/Open