Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-4133
Authors: Sapper, Angelika
Title: Mechanics and dynamics of liposomes and cells studied by QCM and ECIS
Online publication date: 8-Aug-2006
Year of first publication: 2006
Language: english
Abstract: The present thesis introduces a novel sensitive technique based on TSM resonators that provides quantitative information about the dynamic properties of biological cells and artificial lipid systems. In order to support and complement results obtained by this method supplementary measurements based on ECIS technique were carried out. The first part (chapters 3 and 4) deals with artificial lipid systems. In chapter 3 ECIS measurements were used to monitor the adsorption of giant unilamellar vesicles as well as their thermal fluctuations. From dynamic Monte Carlo Simulations the rate constant of vesicle adsorption was determined. Furthermore, analysis of fluctuation measurements reveals Brownian motion reflecting membrane undulations of the adherent liposomes. In chapter 4 QCM-based fluctuation measurements were applied to quantify nanoscopically small deformations of giant unilamellar vesicles with an external electrical field applied simultaneously. The response of liposomes to an external voltage with shape changes was monitored as a function of cholesterol content and adhesion force. In the second part (chapters 5 - 8) attention was given to cell motility. It was shown for the first time, that QCM can be applied to monitor the dynamics of living adherent cells in real time. QCM turned out to be a highly sensitive tool to detect the vertical motility of adherent cells with a time resolution in the millisecond regime. The response of cells to environmental changes such as temperature or osmotic stress could be quantified. Furthermore, the impact of cytochalasin D (inhibits actin polymerization) and taxol (facilitate polymerization of microtubules) as well as nocodazole (depolymerizes microtubules) on the dynamic properties of cells was scrutinized. Each drug provoked a significant reduction of the monitored cell shape fluctuations as expected from their biochemical potential. However, not only the abolition of fluctuations was observed but also an increase of motility due to integrin-induced transmembrane signals. These signals were activated by peptides containing the RGD sequence, which is known to be an integrin recognition motif. Ultimately, two pancreatic carcinoma cell lines, derived from the same original tumor, but known to possess different metastatic potential were studied. Different dynamic behavior of the two cell lines was observed which was attributed to cell-cell as well as cell-substrate interactions rather than motility. Thus one may envision that it might be possible to characterize the motility of different cell types as a function of many variables by this new highly sensitive technique based on TSM resonators. Finally the origin of the broad cell resonance was investigated. Improvement of the time resolution reveals the "real" frequency of cell shape fluctuations. Several broad resonances around 3-5 Hz, 15-17 Hz and 25-29 Hz were observed and that could unequivocally be assigned to biological activity of living cells. However, the kind of biological process that provokes this synchronized collective and periodic behavior of the cells remains to be elucidated.
DDC: 500 Naturwissenschaften
500 Natural sciences and mathematics
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 09 Chemie, Pharmazie u. Geowissensch.
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-4133
URN: urn:nbn:de:hebis:77-11298
Version: Original work
Publication type: Dissertation
License: In Copyright
Information on rights of use: https://rightsstatements.org/vocab/InC/1.0/
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
1129.pdf3.26 MBAdobe PDFView/Open