Please use this identifier to cite or link to this item:
Authors: Khor, Hwei Ling
Title: Neurons derived from P19 embryonic carcinoma cells as a platform for biosensor applications - optimisation and characterisation
Online publication date: 7-Jan-2008
Year of first publication: 2008
Language: english
Abstract: P19 is a mouse-derived embryonal carcinoma cell line capable of differentiation toward ectodermal, mesodermal and endodermal lineages and could thus be differentiated into neurons. Different culture conditions were tested to optimise and increase the efficiency of neuronal differentiation since the population of P19-derived neurons was reported to be heterogeneous with respect to the morphology and neurotransmitters they synthesise. P19-derived neurons were cultured on microelectrode arrays as cell aggregates and as dissociated cells. Improved neuronal maturation was shown by the presence of microtubule associated protein 2, neurofilament and synaptophysin formation when initiation of neuronal differentiation was prolonged. High initial cell density cultures and coating of surfaces with polyethylenimine-laminin further improved neuronal maturation of differentiated P19 cells. Increased spontaneous activities of the P19-derived neurons were correspondingly recorded. Two to three hours recordings were performed between 17 and 25 days when extracellular signals were stabilised. It was found that P19-derived neurons developed network properties as partially synchronised network activities. P19-derived neurons appeared to give inhomogenous response to the 2 major neurotransmitters, -aminobutyric acid (GABA) and glutamate. The P19-derived neuronal networks obtained from optimised protocol in this thesis were predominantly GABAergic. The reproducible long term extracellular recordings performed showed that neurons derived from P19 embryonal carcinoma cells could be applied as a model for cell based biosensor in corporation with microelectrode arrays.
DDC: 000 Allgemeines
000 Generalities
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 10 Biologie
Place: Mainz
URN: urn:nbn:de:hebis:77-15184
Version: Original work
Publication type: Dissertation
License: In Copyright
Information on rights of use:
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
1518.pdf8.49 MBAdobe PDFView/Open