Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-3818
Authors: Grupe, Stefanie
Title: Mikrosomale Biotransformation von Benzo[ghi]perylen, einem mutagenen polyaromatischen Kohlenwasserstoff ohne das Strukturelement der Bay-Region des kanzerogenen Benzo[a]pyrens
Online publication date: 13-Jun-2005
Year of first publication: 2005
Language: german
Abstract: Kanzerogene polyaromatische Kohlenwasserstoffe (PAKs), wie Benzo[a]pyren, besitzen eine Bay-Region mit ortho-kondensiertem Benzoring. Dadurch ist die enzymatische Bildung von Bay-Region-Dihydrodiolepoxiden (Oxiranylring in der sterisch abgeschirmten Molekülbucht) möglich, die als ultimal kanzerogene Metaboliten der PAKs gelten. Diese lösen durch DNA-Modifikation Primärläsionen aus, die, sofern sie nicht enzymatisch repariert werden, bei der DNA-Replikation Fehler verursachen (Mu-tationen). Der Mehrstufenprozeß der Kanzerogenese (Promotion und Progression) führt schließlich zur neoplastischen Entartung der Zelle. Benzo[ghi]perylen (BghiP) repräsentiert eine Gruppe von PAKs, die keine „klassische“ Bay-Region besitzen und daher keine vicinalen Dihydrodiolepoxiden bilden können. Trotzdem ist BghiP mutagen, z. B. in den Stämmen TA98 und TA100 von Salmonella typhimurium (1,3- bzw. 4,3 his+-Revertanten/nmol) nach metabolischer Aktivierung mit der postmitochondrialen Fraktion von Ratten nach Behandlung mit 3-Methylcholanthren. Hemmung der mikrosomalen Epoxidhydrolase (mEH) mit 1,1,1-Trichlor-2-propenoxid (TCPO) steigert die bakterielle Mutagenität von BghiP im Stamm TA98 um das 4-fache, was Arenoxide als ultimale Mutagene wahrscheinlich macht. Dieses Ergebnis wird au-ßerdem durch Untersuchung der DNA-Bindung mit dem Verfahren des 32P-Postlabelings bestätigt (Dr. Fickler, Institut für Toxikologie, Universität Mainz). Danach bildete mikrosomal aktiviertes BghiP drei Addukte (ein Hauptaddukt, zwei Nebenaddukte), die durch Hemmung der mEH mit TCPO verstärkt wurden (das Hauptaddukt um 29%). Um den für die bakterielle Mutagenität von BghiP verantwortlichen Metaboliten zu identifizieren, wurde die mikrosomale Biotransformaton von BghiP aufgeklärt. Umsetzung von BghiP mit Lebermikrosomen von Ratten nach Behandlung mit Aroclor 1254 lieferte 17 mit Ethylacetat extrahierbare Metaboliten. Zwölf dieser Metaboliten konnten durch eine Kombination von chromatographischen, spektroskopi-schen und biochemischen Methoden identifiziert werden. Daraus ergeben sich zwei Biotransformati-onswege: Weg I beginnt mit einem Angriff von Cytochrom P450-abhängigen Monooxygenasen an Position 7 und der Bildung des 7-Phenols. Dieses wird dann in das 7,8- bzw. 7,10-Diphenol überführt, die schließlich zu den mehrkernigen Chinonen an der 7,8- bzw. 7,10-Position oxidiert werden. Im Bio-transformationsweg II werden die K-Regionen von BghiP durch Cytochrom P450 funktionalisiert. Zu-nächst entstehen das auf indirektem Weg identifizierte 3,4-Oxid und das 3,4,11,12-Bisoxid, die in mikrosomalen Umsetzungen von BghiP nur nach Hemmung der mEH gebildet werden. Enzymatische Hydrolyse des 3,4-Oxides ergibt das trans-3,4-Dihydrodiol, das zum 3,4-Chinon oxidiert wird. Ebenso entsteht aus dem 3,4,11,12-Bisoxid das trans-3,4-trans-11,12-Bisdihydrodiol, aus dem durch Oxidati-on das trans-3,4-Dihydrodiol-11,12-Chinon hervorgeht. Untersuchung der stereoselektiven enzymati-schen Bildung der K-Region-trans-Di¬hydrodiole ergaben eine präferentielle Entstehung der 3R,4R- bzw. 3R,4R,11R,12R-Enantiomere. Untersuchungen der bakteriellen Mutagenität der Hauptmetaboliten 3,4-Dihydrodiol und dem 7-Phenol machte deutlich, dass beide Biotransformationswege I und II von BghiP zur bakteriellen Mutagenität beitragen. Das 7-Phenol aus Weg I ist ein proximales Mutagen, was auch von Phenolen anderer PAKs bekannt ist. Das 3,4-Dihydrodiol aus Weg II wird so schwach zu Mutagenen aktiviert, dass dem vermutlich gebildete 3,4-Dihydrodiol-11,12-oxid keine große Bedeutung als ultimales Mutagen von BghiP zukommt. Die Bestimmung der direkten mutagenen Aktivität (ohne metabolische Aktivierung) der mutmaßlich ultimal mutagenen Arenoxide von BghiP ergab, dass die des 3,4,11,12-Bisarenoxides sehr gering war (1,3 his+-Revertanten/nmol im Stamm TA98). Das 3,4-Oxid hingegen bewirkte einen deutlichen gentoxischen Effekt in den Stämmen TA98 und TA100 (5,5 bzw. 10 his+-Revertanten/nmol). Dies wurde durch die Bestimmung der DNA-Bindung mit dem 32P-Postlabeling, in dem das 3,4-Oxid für das Hauptaddukt von BghiP verantwortlich gemacht werden konnte, bestätigt. Daher kommt dem 3,4-Oxid als ultimales Mutagen die größte Bedeutung für die Gentoxizität von BghiP zu. Die Ergebnisse dieser Arbeit lassen bei PAKs ohne Bay-Region auf Arenoxide schließen, die eine notwendige Voraussetzung für DNA-Bindung und Mutagenität sind.
Polycyclic aromatic hydrocarbons (PAH) exhibiting strong genotoxicity , e.g. benzo[a]pyrene (BaP), possess a bay-region comprising an ortho-fused benzo ring. Benzo[ghi]perylene (BghiP) represents the group of PAH lacking such a "classic" bay-region as structural feature and hence cannot be metabolically converted like BaP to bay-region dihydrodiol epoxides considered as ultimate mutagenic and carcinogenic metabolites of PAH. BghiP exhibits bacterial mutagenicity in strains TA98 (1.3 his+-revertant colonies/nmol) and TA100 (4.3 his+-revertant colonies/nmol) of S. typhimurium after metabolic activation by the postmitochondrial hepatic fraction of CD® rats treated with 3- methylcholanthrene. Inhibition of the microsomal epoxide hydrolase (mEH) with 1,1,1-trichloro-2-propene oxide (TCPO) raised the bacterial mutagenicity of BghiP in TA98 almost 4-fold indicating arene oxides as ultimate mutagens. To confirm this assumption the biotransformation of BghiP was elucidated. Incubation of BghiP (80 µM) with liver microsomes of CD® rats treated with Aroclor 1254 resulted in a conversion of 33.8 nmol/2 mg protein/40 min and yielded 17 ethyl acetate-extractable metabolic products not found in the absence of enzymatic activation. Twelve metabolites could be identified by a combination of chromatographic, spectroscopic and biochemical methods. The microsomal biotransformation of BghiP proceeds by two distinct pathways: Pathway I starts with the monooxygenase attack at the 7-position leading to the 7-phenol, which is transformed to the 7,8-diphenol and finally to the 7,8-quinone. On pathway II the K-regions of BghiP are successively converted to arene oxides yielding the 3,4-oxide and the 3,4,11,12-bisoxides. Enzymatic hydrolysis of the 3,4-oxide leads to the trans-3,4-dihydrodiol which is oxidized to the 3,4-quinone. Similarly the 3,4,11,12-bisdihydrodiols and the trans-3,4-dihydrodiol 11,12-quinone are formed from the 3,4,11,12-bisoxides. The trans-3,4-dihydrodiol and the trans-3,4-11,12-bisdihydrodiols are preferentially formed as R,R and R,R,R,R enantiomers, respectively. The intrinsic bacterial mutagenicity of the 3,4,11,12-bisoxides is rather low and hardly explains the strong increase of bacterial mutagenicity after inhibition of mEH. Thus the the 3,4-oxide seems to play the most important role as ultimate mutagenic metabolite of BghiP.
DDC: 500 Naturwissenschaften
500 Natural sciences and mathematics
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 09 Chemie, Pharmazie u. Geowissensch.
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-3818
URN: urn:nbn:de:hebis:77-7735
Version: Original work
Publication type: Dissertation
License: In Copyright
Information on rights of use: https://rightsstatements.org/vocab/InC/1.0/
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
773.pdf6.88 MBAdobe PDFView/Open