Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-3685
Authors: Bannwarth, Markus
Title: Smart magnetic dispersions - from switchable release to well-defined hybrid nanofibers
Online publication date: 6-Feb-2014
Language: english
Abstract: The synthesis, characterization and application of aqueous dispersions of superparamagnetic/polymer hybrid nanoparticles and capsules is described. Implementation of the superparamagnetic moiety into the polymer matrix enables a response of the nanomaterials towards an external magnetic field. Application of the external field is used for two main purposes: i) As heat generator, when an alternating magnetic field is applied. ii) As structuring agent to self-assemble superparamagnetic nanoparticles in the external field.rnIn the first part, superparamagnetic nanoparticles were used as heat generators in order to achieve a magnetic field induced release of an active compound from nanocontainers. To achieve such a release in remote-controlled fashion, the encapsulation of superparamagnetic nanoparticles into polymer nanocapsules was combined with the integration of a thermolabile compound into the shell of the nanocontainers. The magnetic nanoparticles acted as generators for heat, which decomposed the thermolabile compound. Pores were created in the degrading shell and an active substance was released.rn Additionally, the self-assembly of polymer nanoparticles, which were labeled with a superparamagnetic moiety as structuring agent, could be demonstrated. A combination of a magnetic field induced self-assembly and a sintering of neighboring particles upon an increase in temperature above the glass transition temperature of the polymer was used to form stable architectures. Various structures with tunable periodicity could be obtained ranging from smooth linear nanofibers to zigzag fibers. Besides solely creating linear architectures, the frugal process additionally allowed the creation of arrangements in analogy to more complex polymer architectures: By the introduction of defined junction points, the generation of branched structures and networks was demonstrated. Additionally, by tailoring the interaction of differently sized particles, the preparation of nanoparticle arrangements in statistical or block copolymer fashion was shown. Moreover, a reversible linear assembly and linkage of the nanoparticles was demonstrated following a lock/unlock mechanism. Therefore, the particles were locked in their linear assembly by a stable iron(III) hydroxamato-complex and unlocked by addition of a reducing agent and formation of a less stable iron(II)-complex.Further, in various projects with collaboration partners, nanoparticles and nanocapsules were labeled with a superparamagnetic moiety for their use as contrast agents in magnetic resonance imaging or as magnetically separable dispersions.
DDC: 540 Chemie
540 Chemistry and allied sciences
Institution: Johannes Gutenberg-Universität Mainz
Department: Externe Einrichtungen
Place: Mainz
DOI: http://doi.org/10.25358/openscience-3685
Version: Original work
Publication type: Dissertation
License: in Copyright
Information on rights of use: https://rightsstatements.org/vocab/InC/1.0/
Extent: 193 S.
Appears in collections:JGU-Publikationen

Files in This Item:
File SizeFormat 
3650.pdf8.69 MBAdobe PDFView/Open