Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-3411
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHimmerich, Markus
dc.date.accessioned2003-12-31T23:00:00Z
dc.date.available2004-01-01T00:00:00Z
dc.date.issued2004
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/3413-
dc.description.abstractIn this thesis, three different types of quantum rings arestudied. These are quantum rings with diamagnetic,paramagnetic or spontaneous persistent currents. It turns out that the main observable to characterizequantum rings is the Drude weight. Playing a key role inthis thesis, it will be used to distinguish betweendiamagnetic (positive Drude weight) and paramagnetic(negative Drude weight) ring currents. In most models, theDrude weight is positive. Especially in the thermodynamiclimit, it is positive semi-definite. In certain modelshowever, intuitivelysurprising, a negative Drude weight is found. This rareeffect occurs, e.g., in one-dimensional models with adegenerate ground state in conjunction with the possibilityof Umklapp scattering. One aim of this thesis is to examineone-dimensional quantum rings for the occurrence of anegative Drude weight. It is found, that the sign of theDrude weight can also be negative, if the band structurelacks particle-hole symmetry. The second aim of this thesis is the modeling of quantumrings intrinsically showing a spontaneous persistentcurrent. The construction of the model starts from theextended Hubbard model on a ring threaded by anAharonov-Bohm flux. A feedback term through which thecurrent in the ring can generate magnetic flux is added.Another extension of the Hamiltonian describes the energystored in the internally generated field. This model isevaluated using exact diagonalization and an iterativescheme to find the minima of the free energy. The quantumrings must satisfy two conditions to exhibit a spontaneousorbital magnetic moment: a negative Drude weight and aninductivity above the critical level. The magneticproperties of cyclic conjugated hydrocarbons likebenzene due to electron delocalization [magnetic anisotropy,magnetic susceptibility exaltation, nucleus-independent chemical shift (NICS)]---that have become important criteriafor aromaticity---can be examined using this model. Corrections to the presented calculations are discussed. Themost substantial simplification made in this thesis is theneglect of the Zeeman interaction of the electron spins withthe magnetic field. If a single flux tube threads a quantumring, the Zeeman interaction is zero, but in mostexperiments, this situation is difficult to realize. In themore realistic situation of a homogeneous field, the Zeemaninteraction has to be included, if the electrons have atotal spin component in the direction of the magnetic field,or if the magnetic field is strong.en_GB
dc.language.isoeng
dc.rightsInCopyrightde_DE
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titlePersistent currents in quantum ringsen_GB
dc.typeDissertationde_DE
dc.identifier.urnurn:nbn:de:hebis:77-5089
dc.identifier.doihttp://doi.org/10.25358/openscience-3411-
jgu.type.dinitypedoctoralThesis
jgu.type.versionOriginal worken_GB
jgu.type.resourceText
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik-
jgu.organisation.year2004
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.organisation.placeMainz-
jgu.subject.ddccode530
opus.date.accessioned2003-12-31T23:00:00Z
opus.date.modified2003-12-31T23:00:00Z
opus.date.available2004-01-01T00:00:00
opus.organisation.stringFB 08: Physik, Mathematik und Informatik: FB 08: Physik, Mathematik und Informatikde_DE
opus.identifier.opusid508
opus.institute.number0800
opus.metadataonlyfalse
opus.type.contenttypeDissertationde_DE
opus.type.contenttypeDissertationen_GB
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
508.pdf2.44 MBAdobe PDFView/Open