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Abstract

In this thesis, three different types of quantum rings are studied. These are
quantum rings with diamagnetic, paramagnetic or spontaneous persistent currents.

It turns out that the main observable to characterize quantum rings is the
Drude weight. Playing a key role in this thesis, it will be used to distinguish
between diamagnetic (positive Drude weight) and paramagnetic (negative Drude
weight) ring currents. In most models, the Drude weight is positive. Especially in
the thermodynamic limit, it is positive semi-definite. In certain models however,
intuitively surprising, a negative Drude weight is found. This rare effect occurs,
e.g., in one-dimensional models with a degenerate ground state in conjunction
with the possibility of Umklapp scattering. One aim of this thesis is to examine
one-dimensional quantum rings for the occurrence of a negative Drude weight.
It is found, that the sign of the Drude weight can also be negative, if the band
structure lacks particle-hole symmetry.

The second aim of this thesis is the modeling of quantum rings intrinsically
showing a spontaneous persistent current. The construction of the model starts
from the extended Hubbard model on a ring threaded by an Aharonov-Bohm
flux. A feedback term through which the current in the ring can generate mag-
netic flux is added. Another extension of the Hamiltonian describes the energy
stored in the internally generated field. This model is evaluated using exact di-
agonalization and an iterative scheme to find the minima of the free energy. The
quantum rings must satisfy two conditions to exhibit a spontaneous orbital mag-
netic moment: a negative Drude weight and an inductivity above the critical
level. The magnetic properties of cyclic conjugated hydrocarbons like benzene
due to electron delocalization [magnetic anisotropy, magnetic susceptibility exal-
tation, nucleus-independent chemical shift (NICS)]—that have become important
criteria for aromaticity—can be examined using this model.

Corrections to the presented calculations are discussed. The most substantial
simplification made in this thesis is the neglect of the Zeeman interaction of the
electron spins with the magnetic field. If a single flux tube threads a quantum ring,
the Zeeman interaction is zero, but in most experiments, this situation is difficult
to realize. In the more realistic situation of a homogeneous field, the Zeeman
interaction has to be included, if the electrons have a total spin component in the
direction of the magnetic field, or if the magnetic field is strong.
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Zusammenfassung

In dieser Arbeit werden drei verschiedene Arten von Quantenringen beschrie-
ben. Diese Quantenringe weisen diamagnetische, paramagnetische oder spontane
Ringströme auf.

Eine wesentliche Größe, mit der man diese Quantenringe charakterisieren kann,
ist das Drude-Gewicht. Es spielt eine wesentliche Rolle in dieser Arbeit und wird
dazu genutzt, diamagnetische (positives Drude-Gewicht) und paramagnetische
(negatives Drude-Gewicht) Ringströme zu unterscheiden. Für die meisten Modelle
ist das Drude-Gewicht positiv. Überraschender Weise, tritt in manchen Ringen ein
negatives Drude-Gewicht auf. Dieser seltene Effekt kann in eindimensionalen Rin-
gen zum Beispiel auftreten, wenn der Grundzustand entartet ist, und Umklapp-
Streuung möglich ist. Ein Ziel dieser Arbeit ist es, eindimensionale Ringe auf das
Auftreten eines negativen Drude-Gewichts zu untersuchen.

Das zweite Ziel dieser Arbeit besteht darin, Quantenringe zu modellieren, die
einen spontanen Ringstrom aufweisen. Die Konstruktion des Modells erfolgt auf
der Grundlage des Hubbard-Modells auf einem Ring, der von einem Aharonov-
Bohm-Fluss durchsetzt ist. Dieses Modell wird mit einem Rückkopplungsterm
erweitert, der es dem Strom im Ring erlaubt, selbst einen magnetischen Fluss
zu erzeugen. Dieses Modell wird mit Hilfe der Exakten Diagonalisierung und ei-
nem iterativen Schema ausgewertet, um die Minima der Freien Energie zu finden.
Ein Quantenring muss zwei Bedingungen erfüllen um einen spontanen Ringstrom
aufzuweisen: ein negatives Drude-Gewicht und eine Induktivität oberhalb des kri-
tischen Niveaus. Die magnetischen Eigenschaften von zyklisch konjugierten Koh-
lenwasserstoffen wie Benzol, die durch die Elektronendelokalisierung in diesen Sy-
stemen entstehen, können mit diesem Modell untersucht werden. Dies sind die
magnetische Anisotropie, die “magnetic susceptibility exaltation” und der “nucleus-
independent chemical shift” (NICS), die wichtige Kriterien für die Aromatizität
einer Verbindung sind.

Korrekturen für die vorgestellten Rechnungen werden diskutiert. Die grund-
legendste Vereinfachung in dieser Arbeit ist die Vernachlässigung der Zeeman-
Wechselwirkung der Spins der Elektronen mit dem magnetischen Feld. Wenn ein
einzelner Flussschlauch einen Ring durchdringt, liefert die Zeeman-Wechselwir-
kung keinen Beitrag. In den meisten Experimenten kann diese Situation nicht
hergestellt werden. Ein realistischerer Fall wäre ein Ring in einem homogenen
Feld. In diesem Fall müsste die Zeeman-Wechselwirkung berücksichtigt werden,
wenn die Elektronen eine resultierende Spin-Komponente in Richtung des magne-
tischen Felds aufweisen, oder wenn das magnetische Feld stark ist.
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1 Introduction

1.1 Quantum rings

Quantum rings are small conducting rings with only a few electrons. The size of
the ring structure is of the order of the phase-coherence length of the electrons.
We consider quantum rings to possess a discrete spectrum of electronic states and
a coherent motion of electrons in the sense that electrons can propagate around
the whole ring without inelastic scattering, maintaining a definite phase of their
wave function. This condition allows the electrons to exhibit interesting inter-
ference phenomena in analogy to superconducting quantum interference devices
(SQUIDs). These effects are Aharonov-Bohm oscillations (AB59) in the energy
and magnetoresistance, and persistent currents (BIL83). It has to be noted that
a clear separation between the momentum-relaxation length scales and the phase-
randomization length scales exists. The latter can be essentially infinite at very
low temperatures while the former are typically dependent upon the disorder and
can vary from a length scale on the order of atomic dimensions to quite large
values in nearly perfect crystals (WW92). This leads to interference phenomena
even in rather large disordered samples described as mesoscopic that are found
between the microscopic and macroscopic structures according to size. They are
at the crossover from the quantum mechanical to the classical regime.

The phase-coherence length of the electrons can be measured. At a given tem-
perature, in a given material, the phase-coherence length of the electrons is the
circumference of the largest ring that shows Aharonov-Bohm oscillations in its
physical quantities. The phase-coherence length can be about a micron in nor-
mal metal rings at liquid helium temperature. At room temperature, the phase-
coherence length, which is roughly proportional to the inverse temperature, ex-
ceeds the circumference of a benzene molecule. A discussion of the effects of
temperature and electron-phonon scattering on the phase-coherence length of an
electron is found in chapter 3 of Ref. (Imr97). At low temperatures, the phonon
degrees of freedom freeze out, therefore other mechanisms of dephasing should be
taken into account. The electron-electron interaction is the dominant mechanism
at low temperatures. Studies of the influence of the electron-electron interaction
on electron dephasing have been conducted recently. It is a well known result that
a ring pierced by a flux of half a flux quantum, which shifts the phase of an electron
traveling through one arm of the ring by π in comparison to an electron traveling
through the other arm of the ring, should exhibit vanishing electron transmission.
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1 Introduction

However, Z̆itko and Bonc̆a recently found that the electron-electron interaction
in the ring area leads to a finite transmission of electrons through the ring, thus
dephasing the many-electron wave function (Z̆B03). Therefore, the importance of
the electron-electron interaction cannot be overestimated and the aim of this thesis
is to arrive at a second-quantized model including the strong Coulomb repulsion
in Chap. 4. The first few chapters deal with noninteracting electrons to bridge the
gap between the initial work being done on quantum rings, which was for weakly
interacting electrons, and the strongly correlated models that are applied to the
topic at present.

This thesis is concerned with rings that behave purely quantum mechanically.
These rings are found at the lower end of the nanoscopic scale. For example,
the benzene molecule is a quantum ring. The π-electrons of benzene can move
phase coherently through the molecule. This example indicates a link between
the physical chemistry of aromatic and antiaromatic compounds and the topic of
quantum rings. The ring currents (Laz00; GM01) that are calculated by theoret-
ical chemists in order to explain nuclear magnetic resonance (NMR) spectroscopy
of ring-shaped molecules are the persistent currents of quantum rings.

1.2 Aromaticity, ring currents and molecular electronics

Organic semiconductors have gained a lot of interest during recent years. Organic
thin film transistors with the highest mobilities of electrons can be built from
pentacene (DM01), an aromatic molecule that consists of five benzene rings. Also,
for the development of molecular electronics (AR98), molecules with delocalized
π-systems seem most promising (VPL02).

The term “molecular electronics” describes two different things. Electronic com-
ponents consisting of a film or a liquid crystalline array of organic molecules are
referred to as molecular electronics. Other authors have preferred to reserve the
term for single molecule tasks such as single molecule-based devices or single mo-
lecular wires. It would be better to follow the suggestion of Petty et al. (PBB95)
by using two subcategories, namely “molecular materials for electronics” for bulk
applications and “molecular scale electronics” for single molecule applications.

In 1974, Aviram and Ratner suggested to plug a single molecule between two
current leads which should show the current-voltage characteristic of a diode. It
took some twenty years to carry out this challenging experiment. In the exper-
iments, organic molecules with conjugated π-electrons are connected via sulphur
atoms to gold surfaces at both sides if the molecule. A schematic of one of the
most famous experiments by Reed et al. (RZM+97) is shown in Fig. 1.1. The
current-voltage characteristic and the conductance was measured. With almost
the same technique and a third electrode controlling the electrostatic potential at
the place of the molecule, Park et al. succeeded in fabricating the first molecular
field effect transistor (PPG+02).

The objective of part of this thesis is to investigate the static magnetic properties

8



1.2 Aromaticity, ring currents and molecular electronics

Figure 1.1: Schematic of a conducting molecular junction taken from Ref.
(RZM+97). The benzene-1,4-thiolate self-assembled monolayer be-
tween the gold electrodes was formed in a mechanically controllable
break junction.

of single aromatic molecules, specifically those properties originating from ring
currents. Consequently, we do not connect the molecules to external wires nor do
we look at the interaction with static electric fields, but these would be natural
extensions of the work presented in this thesis.

There is no unique definition of the term aromaticity. Several physical, geomet-
rical and chemical criteria (e.g., magnetic properties, equality of bond lengths, a
particularly pleasant smell, a predisposition to nitration and sulphonation and a
strong delocalization of spin) have been used to classify molecules as aromatic at
different times. Therefore, there has been much confusion over the precise mean-
ing and definition. For a review on aromaticity and its relation to ring currents
see the recent articles of Lazzeretti (Laz00), Gomes, and Mallion (GM01).

The ring-current model was proposed in 1936 by Pauling (Pau36) to explain
the experimental fact, that the magnetic “susceptibility ellipsoids of the aromatic
molecules are found to be approximately prolate ellipsoids of revolution, with the
long axis normal to the plane of the molecule”. In 1961, the effect of the ring
current on the chemical shift of proton resonance spectra (Pop56) lead to the
suggestion that these effects should be a criterion for aromaticity (EJ61). The
magnetic field that the ring current in an aromatic ring generates enhances the
magnetic field at the proton locations outside the ring and diminishes the field
inside the ring (see Fig. 1.2). These substances are called diatropic in contrast to

9
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paratropic rings that enhance the magnetic field in their interior (MGS94). There
is a clear correlation between diatropic and aromatic substances on one hand and
between paratropic and antiaromatic substances on the other hand.
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Figure 1.2: The diatropic aromatic benzene molecule is shown with its ring current
on the left in contrast to the paratropic antiaromatic cyclooctatetraen
molecule on the right.

Today, there is overwhelming evidence that aromaticity can be uniquely defined
by magnetic properties. For example the magnetic anisotropy (Fly74) and the
magnetic susceptibility exaltation (DWL68; DWL69) [defined as the difference
between the magnetic susceptibility for the observed compound and the value es-
timated for the hypothetical system without cyclic electron delocalization] are used
as a criterion next to the nucleus-independent chemical shift [NICS] (vRSMD+96)
that has been proposed as the major criterion for aromaticity (WAT+02). Ho-
wever, the NICS is a theoretical criterion that is not observable by definition.

There are a lot of ab-initio methods for calculating chemical shifts for NMR
spectroscopy. For a review see, e.g., Ref. (HJR99). All these methods are lin-
ear approximations for small fields. Of course, a linear response current cannot
describe the system’s behavior in arbitrarily high external magnetic fields. The
response current should show a periodicity with respect to the number of flux
quanta threading the ring. This periodicity will be destroyed due to Zeeman
splitting of the electronic energies and spin flipping. Therefore, a highly nonlinear
dependence of the current with respect to large enough external fields is expected.
To force a flux quantum inside a benzene molecule—a hexagon with a side length
of 140 pm—one would need an extremely high magnetic field of 8 × 104 T. It is
not intended to reach such high values of magnetic field within the approximation
scheme discussed in this thesis. The Zeeman interaction of the electron spins with
the magnetic field is neglected. We are just interested in the orbital magnetic
effects of quantum rings.

The topic of quantum rings is not restricted to molecular rings as is shown in
the next section.
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1.3 Fabrication and short history of quantum rings

1.3 Fabrication and short history of quantum rings

Since the mid-eighties, there has been an impressive experimental development to-
wards smaller and smaller quantum rings; with the most recent techniques the true
quantum limit of nanoscopic rings containing only a few electrons was reached.
At the same time, many experiments still study mesoscopic rings with hundreds
of electrons. Early experiments in the eighties and nineties reported observations
of Aharonov-Bohm oscillations and persistent currents in metallic gold or copper
rings. The first observation of h/e flux-periodic oscillations in the magnetoresist-
ance of a normal metal ring was made in 1985 by Webb et al. (WWUL85). They
were using rings drawn with a scanning electron transmission microscope to a
polycrystalline gold film. The rings were connected symmetrically to two current
leads to measure the resistivity. The diameter was several hundred nanometers.

The oscillations were correctly predicted by several theoretical papers (BIL83;
GI84; BIA84). Büttiker, Imry, and Landauer were the first to consider a nor-
mal metallic one-dimensional ring threaded by a magnetic field. They predicted,
following earlier work of Byers, Yang (BY61), and Bloch (Blo70) concerning quant-
ized flux in superconducting rings, that because of the modification of the bound-
ary conditions by the magnetic flux, the electron wave function and then any
physical property of the ring is a periodic function of the magnetic flux with a
fundamental period of h/e. In superconducting cylinders and rings, these oscilla-
tions had been observed with a period of h/2e because of electron pairing.

In 1990, Lévy et al. found h/2e periodic oscillations in the magnetization re-
sponse of 107 isolated copper rings with a diameter of approximately five hundred
nanometers (LDDB90). These rings were fabricated by electron-beam techniques.
Although the explanation of the phenomenon was incomplete, it was another proof
of the existence of persistent currents in mesoscopic rings. It was found later that
the h/e oscillations were washed out because the effect had randomly distributed
signs in the different rings that were averaged over in the experiment. The amp-
litude and the sign of the persistent current depends on the number of electrons
on the ring. Only the even harmonics of the effect survive the ensemble averaging
(AGI91).

The next observation of h/e periodic oscillations in the magnetization of a
single gold loop followed in 1991 (CWB+91). The production of the ring with a
diameter of several thousand nanometers was done with standard electron-beam
lithographic techniques.

In parallel, rings were fabricated in GaAs/AlGaAs heterojunctions by electron-
beam lithographic techniques. The same h/e periodic oscillations in the mag-
netoresistance were observed (TCC+87). Oxidizing a ring structure with the tip
of an atomic force microscope into a AlGaAs-GaAs heterostructure, Fuhrer et al.
built a ring with diameter of 132 nm (FLI+01), containing a few hundred electrons
(see Fig. 1.3). Their measurements showed an Aharonov-Bohm effect and allowed
to deduce the energy spectra of their device (see Fig. 1.4). It turned out that
their system can be well described within a single-particle picture because of an
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effective screening of the electron-electron interaction by a metallic top gate, in
which the electron density is some orders of magnitude higher than in the thin
heterojunction.

Figure 1.3: Sample layout. a, Micrograph of the quantum ring taken with the
unbiased AFM-tip after writing the structure. The oxide lines (bright
regions) deplete the 2DEG 34 nm below the surface separating the
sample into several conductive (dark) regions. The current is passed
from source to drain. The in-plane gates (qpc1a, qpc1b, qpc2a, qpc2b,
pg1 and pg2) are used to tune the point contacts and two arms of the
ring. b, Schematic sketch of the ring. The dark curves represent the
oxide lines. From transmission measurements of the point contacts at
source and drain we estimate the depletion length to be about 50 nm,
which results in an estimated channel width of r 65 nm. The average
radius of the ring is r0 = 132 nm. (FLI+01)

Experiments without a screening top gate, in the regime of strong electron-
electron interaction, showed a reduced Aharonov-Bohm period (KFBH03). Indic-
ations for this so-called “fractional Aharonov-Bohm effect” were found in solutions
of the Hubbard and Luttinger models. It was predicted for quantum rings in Ref.
(NPHC96).

Even smaller nanoscopic rings have been fabricated by self-assembly of InAs
dots on GaAs, using suitable heat treatment (WSH+00; LLG+00). A wide range
of electronic and magnetic properties was investigated in these experiments.

Another hallmark in the research on mesoscopic rings was the prediction of a
persistent current due to the Berry phase that arises in the presence of an inhomo-
geneous magnetic field by Loss et al. The Zeeman interaction couples the electron
spin and the orbital motion, and results in a Berry phase (LGB90). Evidence
for this effect was experimentally found in 1998 by Morpurgo et al. (MHK+98).
They interpreted the splitting of certain peaks in the Fourier spectrum of the
Aharonov-Bohm conductance oscillations as being due to this effect. An even
more exotic effect in mesoscopic rings was proposed very recently by Kane. He
describes a method for observing fractional statistics (Kan03). A coverage of these

12



1.4 Theoretical description of quantum rings

Figure 1.4: The addition spectrum. a, Measurement of Coulomb blockade reson-
ances at fixed magnetic field. The current is measured as a function of
a voltage applied to both plunger gates (pg1 and 2) simultaneously. b,
The evolution of such sweeps with magnetic field results in the addi-
tion spectrum shown in color. The regions of high current (yellow/red)
mark configurations in which a bound state in the ring aligns with the
Fermi level in source and drain. The Aharonov-Bohm period expected
from the ring geometry is indicated by the thin white horizontal lines.
c, Magnetic field sweep for constant plunger gate voltage Vpg = 218
mV (dashed line in the color plot). This peak shows a maximum in
amplitude for B = 0, whereas other peaks (Vpg = 270 mV) display a
minimum. (FLI+01)

interesting effects in this thesis will have to be sacrificed for the sake of brevity.

1.4 Theoretical description of quantum rings

For quantum rings, two theoretical approaches have been developed. Discrete
models describe the rings as consisting of N lattice sites with n electrons, which
can hop from site to site. The electron-electron interaction is approximated to be
an effective on-site interaction (see Fig. 1.5). The Hamiltonian is then a Hubbard
model (Hub63; Gut63) or one of its extensions. By exact diagonalization or Bethe-
ansatz techniques, this approximated Hamiltonian can be exactly solved. Another
possibility is to assume a continuum model. The ring is modeled by an external
confinement potential where the electrons move. The electron-electron interaction

13
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Figure 1.5: The Hubbard model on a ring is used to model quantum rings like,
e.g., a benzene molecule. The amount of energy payed if two electrons
are on the same site is U . The hopping amplitude is t. The current
in the ring is needed to calculate the orbital magnetic moment of the
ring.

is the normal Coulomb interaction. The exact Schrödinger equation is then ap-
proximately solved with quantum-Monte-Carlo methods, density-functional meth-
ods, or numerical diagonalization techniques for a desired number of lowest energy
states (VKDM03).

Studying persistent currents in a ring of finite width and thus going beyond
the one-dimensional picture of mesoscopic and nanoscopic rings is one of the most
important goals. It is difficult to deal with the real spatial geometry of a ring,
therefore rings of finite width have been approximated by simpler models, such
as two-dimensional or three-dimensional straight wires with periodic boundary
conditions. The homogeneous magnetic field was replaced by a magnetic flux
tube confined to the hole region of the ring.

Within such models a varying magnetic field strength just changes the phases
of the electrons, resulting in the periodic Aharonov-Bohm oscillations in the phys-
ical properties and the persistent currents j described above. In conclusion, the
Aharonov-Bohm oscillations are caused by the magnetic flux that is enclosed by
the ring. The vector potential describing the magnetic field can be eliminated
from the Schrödinger equation by introducing a gauge transformation. The result
is that the boundary condition is modified as ψ(ϕ + 2π) = exp(2πiφ/φ0)ψ(ϕ),
thus leading to the periodicity of the physical quantities in the magnetic flux φ
with a period of the flux quantum φ0 = h/e. The magnetic moment M of a ring
is simply related by M = Aj, where A is the area of the ring. These models have
provided convenient tools for studying more complicated problems such as the
effects of electron-electron interaction and disorder scattering on persistent cur-
rents. In this thesis, an effective one-dimensional model is also used to study the
effect of feedback of the persistent current on the magnetic field. An inductivity
assigned to the quantum ring will enable the persistent current to generate an in-
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1.5 Structure of this thesis

ternal magnetic field influencing the persistent current in turn. However, to gain a
complete understanding of the persistent currents and their relation to a realistic
2D or 3D ring over the whole range of magnetic-field strength, the effect of pen-
etration of magnetic field into the conducting region should be considered. This
penetration can result in the breakdown of the simple linear relation between the
magnetic moment and the persistent current in the ring or potentially in aperiodic
Aharonov-Bohm oscillations, even if the spins of the electrons are neglected.

The magnetism of quantum rings is due either to orbital currents of electrons,
or to their spins. We are predominantly concerned with the orbital magnetism in
this thesis. This can be justified by looking at quantum rings that are threaded by
a magnetic flux tube. In this case the spin magnetism of the electron is negligible.
However, for quantum rings in a homogeneous field, spin magnetism is at least for
open-shell configurations—where there is a nonvanishing total spin—very import-
ant. The model for quantum rings presented in the last chapter of this thesis can
easily be extended by a Zeeman interaction term. No alteration of the solution
scheme of the model is needed to evaluate the effects of the Zeeman interaction
with the spin, except for the evaluation of the Hamiltonian in all different total-
spin subspaces. Not to obscure the novel effects of the proposed model, we neglect
the Zeeman interaction at all.

1.5 Structure of this thesis

In the next chapter, we examine noninteracting electrons in static external fields,
neglecting the Zeeman interaction between spins and magnetic field. Insight is
gained how the width of a two-dimensional quantum ring influences the energy
levels of the ring. It is found out that the simple approximation of a phase shift
in the wave function due to the flux in a ring is not valid for broad rings in ho-
mogeneous fields any more. However the one-dimensional approximation is useful
and leading-order finite-width corrections can be included by a simple averaging
process. The third dimension of a quantum ring is neglected in the calculations,
because the wave function parallel to the magnetic field is not influenced by the
field.

Afterwards, we return to one-dimensional rings and examine what properties
paramagnetic rings in contrast to the normal diamagnetic rings have to fulfill.
In paramagnetic rings, the ring currents amplify the magnetic field inside of the
ring. In diamagnetic rings the ring current counteracts the magnetic field in the
interior. The Drude weight—which is the sensitivity of the energy levels to twisted
boundary conditions—is a tool to estimate the sign of the orbital magnetism of
quantum rings. In the thermodynamic limit the Drude weight describes the dc
conductivity of a wire. For small rings it was found to be negative for paramagnetic
rings and positive for diamagnetic rings.

Taking a look at the mechanism underlying the self-interaction of currents flow-
ing in superconducting rings through the generation of magnetic fields, a model for
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1 Introduction

quantum rings including an inductivity is developed. This model also includes the
strong electron-electron interaction. After introducing an iterative scheme to solve
the proposed model, the consequences for two systems are discussed. States with
spontaneous persistent current can be found in quantum rings if the inductivity is
above a critical value. It is not yet clear whether such high values of inductivity
can occur in nature. Quantum rings with states of spontaneous persistent currents
could be used as tiny storage devices if they existed.
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2 Transition to one-dimensional models

In this chapter, the aim is to find out how the energy levels of a ring of nonin-
teracting electrons with vanishing width (one-dimensional∗) and a thin flux tube
threading the ring are transformed if the width of the ring is broadened. The
Schrödinger equation for the electrons on such a ring is separable into a radial
and an azimuthal part. The energy of the one-dimensional (1D) ring diverges
due to the confinement of the radial wave function to an infinitesimal space. If
the divergence is subtracted—so that the energies are measured relatively to the
ground-state energy, the energy levels of the 2D ring are the same as the energy
levels of the 1D ring scaled by a simple factor depending on the ring width. It is
an interesting fact that the azimuthal motion of the electrons influences the radial
wave function of the electrons. If the group velocity of the azimuthal waves is
different from zero, the radial states are pushed to the outer half of the ring.

The energy levels and wave functions of a 2D ring in a homogeneous magnetic
field are then expanded in terms of the 2D ring threaded by a flux tube. The
leading order corrections with respect to the ring width for the 2D ring in a
homogeneous magnetic field can be captured systematically by a perturbation
expansion. The Peierls substitution, which multiplies a phase factor depending
on the magnetic flux in the ring to the wave function, is not valid any more.
In a classical picture, the electrons moving on circles with different radii enclose
different values of flux and interfere with each other, due to their different Peierls
phase factors. This effect leads to the breakdown of the Peierls substitution in
a 2D ring in a homogeneous magnetic field in the framework of this simplistic
picture. The result of this nonsystematic approximation is used for comparison
with the exact result only.

The phase factor is, besides relatively small relativistic corrections, the only
effect that a magnetic vector potential has on the electrons, if the magnetic field
does not pierce the space where the electrons are moving. In a weak homogeneous
field, the phase factor is the most important effect, if there is no resulting spin
component of the electrons in the direction of the magnetic field. In strong homo-
geneous fields and for electronic systems with a resulting spin component in the
direction of the magnetic field, the Zeeman interaction has to be included. These
facts will be briefly discussed in the last section of this chapter.
∗A ring of finite width is called two-dimensional whereas a ring of vanishing width is called one-
dimensional. Accordingly, a three-dimensional ring would be a ring with a two-dimensional
intersection area when cut by a plane through its center of mass.
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2 Transition to one-dimensional models

We neglect the third dimension of quantum rings in this chapter. Most ex-
periments on quantum rings were carried out in semiconductor heterojunctions,
building a ring structure in the essentially two-dimensional electron gas. The ex-
tent of a quantum ring parallel to the magnetic field is of minor importance. The
wave function parallel to the magnetic field is to a lesser extend influenced by the
magnetic field. It yields a constant contribution to the total energy of the system.

Having gained a clearer understanding of the similarities between 1D and 2D
continuum ring models in magnetic fields, it is possible to restrict the research
described in the following chapters to discrete 1D models. It is easy to include the
strong effects of the Coulomb repulsion between electrons via the Hubbard inter-
action in discrete 1D models. The crossover from continuum to discrete models is
justified by adding delta-peak shaped potentials to the continuum model. These
peaks model the sites of the atoms in a ring molecule. The resulting 1D model
is, consequently, a tight-binding model with a Peierls phase factor. This factor is
split into parts describing the amount of phase that the electronic wave function
collects as the electrons hop from site to site.

2.1 Two-dimensional continuum model

In this section, the effect that a magnetic field has on a 2D ring is examined.
Noninteracting electrons of mass m and charge e are moving on a ring of width
ε around the origin. The electrons on the ring in the x-y-plane are confined
by a hard-wall potential. The sites of the atom cores on the ring are modeled
by simple delta peaks in the potential that the electrons feel in the azimuthal
direction (Kronig-Penney model). The magnetic field points in the direction of
the z-axis (see Fig. 2.1).

 

y 

x 

ε 
B 

0ρ  

0⊥ =V  0 ( )δ ϕ− −V a  ⊥ = ∞V  z 

Figure 2.1: Ring with infinite potential walls, threaded by a magnetic field.

The starting point is the nonrelativistic Schrödinger equation. The Hamiltonian
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2.1 Two-dimensional continuum model

for an electron in a magnetic field is (e < 0):

H =
1

2m
(p− eA)2 + V

=
1

2m
p2 − e

2m
(p ·A + A · p) +

e2

2m
A2 + V

=
1

2m
p2 − e

m
A · p +

e2

2m
A2 + V

= − ~
2

2m
∆ +

i~e
m

A · ∇+
e2

2m
A2 + V,

(2.1)

with the penultimate equality coming from the Coulomb gauge (∇ ·A = 0). The
cylindrically symmetric situation is best described in cylindric coordinates. The
magnetic field is supposed to have an axially symmetric profile with respect to the
z-axis. Therefore, the vector potential has only a ϕ-component. The Hamiltonian
in cylindric coordinates is:

H = − ~
2

2m

(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂ϕ2

)

+ V (ρ, ϕ) +
i~e
m
Aϕ

1

ρ

∂

∂ϕ
+

e2

2m
A2
ϕ. (2.2)

The term before the last is the contribution of the angular momentum to the
orbital magnetism. The last one is a diamagnetic contribution. Any expectation
value of the last term is positive. As the vector potential increases linearly with
the magnetic induction, the energy increases quadratically. The contribution to
the magnetization in the ground state, which is the negative of the first derivative
of the expectation value of the last term in the ground state with respect to the
magnetic induction, is negative and directed opposite to the magnetic induction.

We separate the radial coordinate ρ into the average radius of the ring ρ0 and
the deviation from the average ρ̄,

ρ = ρ0 + ερ̄, ρ̄ ∈
[

−1

2
;
1

2

]

. (2.3)

We assume that the potential has the form:

V (ρ, ϕ) = V⊥(ρ) +
ρ2

0

ρ2
V‖(ϕ). (2.4)

The prefactor ρ2
0/ρ

2 makes the resulting differential equation for the electron on
the ring separable. The potential V⊥(ρ) describes the hard-wall confinement,

V⊥(ρ) =

{

0, |ρ− ρ0| < ε
2

∞, |ρ− ρ0| ≥ ε
2

, (2.5)

leading to a boundary condition for the wave function

Ψ(ρ0 + ερ̄, ϕ) = 0 ∀ϕ, ρ̄ = ±1

2
. (2.6)
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2 Transition to one-dimensional models

The potential V‖(ϕ) is the periodic Kronig-Penney potential:

V‖(ϕ) = −V0

N−1
∑

n=0

δ (ϕ− an) , V0 ≥ 0, (2.7)

where
a =

2π

N
(2.8)

is the lattice constant and N is the number of atoms that constitute the ring. Due
to the periodicity of the potential, we are later able to apply the Bloch theorem.

2.2 A ring threaded by a flux tube

In the framework of the above Kronig-Penney model on a ring threaded by a
single flux tube, the validity of the Peierls substitution will be checked in this
section. For any width of the ring, the model can be separated into a radial
and an azimuthal part. In the Peierls substitution, the azimuthal wave function is
assumed to be given by the azimuthal wave function of the model without magnetic
flux, multiplied by a phase factor depending on the value of the magnetic flux in
the ring.

If there is a magnetic flux tube B = φδ(r)ez through the origin, the magnetic
vector potential is

A =
φ

2πρ
eϕ. (2.9)

Let β be the magnetic flux threading the ring in units of the flux quantum,

β =
|e|φ
2π~

. (2.10)

The dimensionless potential and the dimensionless energy are

v(ϕ) =
2mρ2

0V‖(ϕ)

~2
,

η =
2mρ2

0E

~2
.

The time-independent Schrödinger equation is

0 =
(

H(0)−E(0)
ν

)

Ψ(0)
ν

= − ~
2

2m

(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂ϕ2
+

2iβ

ρ2

∂

∂ϕ
− β2

ρ2
− 1

ρ2
v(ϕ) +

η
(0)
ν

ρ2
0

)

Ψ(0)
ν .

(2.11)

We denote quantities relating to the ring threaded by a flux tube with a bracketed
zero as superscript, because the wave functions obtained in this section are shown
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2.2 A ring threaded by a flux tube

to be the same as the ones of the ring with vanishing width in a homogeneous field.
The ring with vanishing width is the unperturbed problem of the perturbation
expansion in powers of the ring width, which is sought in the next section.

With the dimensionless length,

r =
ρ

ρ0

= 1 +
ε

ρ0

ρ̄, (2.12)

the Schrödinger equation becomes

0 =

[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(

∂

∂ϕ
+ iβ

)2

− 1

r2
v(ϕ) + η(0)

ν

]

Ψ(0)
ν . (2.13)

We define the dimensionless Hamiltonian of the system by

D(0) =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(

∂

∂ϕ
+ iβ

)2

− 1

r2
v(ϕ). (2.14)

The Schrödinger equation can be separated into radial and azimuthal parts using
a separation of variables. The result is (ν is a set of all quantum numbers):

(

D(0) +η(0)
ν

)

Pν(r)χν(ϕ) = 0, (2.15)

yielding

1

Pν(r)

[

r2 ∂
2

∂r2
+ r

∂

∂r
+ η(0)

ν r2

]

Pν(r)

+
1

χν(ϕ)

[

(

∂

∂ϕ
+ iβ

)2

− v(ϕ)

]

χν(ϕ) = 0. (2.16)

Setting both parts equal to a constant ±ξ2
ν then gives

[

r2 ∂
2

∂r2
+ r

∂

∂r
+ η(0)

ν r2 − ξ2
ν

]

Pν(r) = 0,

[

(

∂

∂ϕ
+ iβ

)2

+ ξ2
ν − v(ϕ)

]

χν(ϕ) = 0.

(2.17)

These two differential equations are solved in the next sections. The aim is
to study the interplay between the radial and azimuthal motion of electrons in
quantum rings. The coupling between both directions of motion is a feature which
is not present in one-dimensional models. It is interesting to know the differences
between 1D and 2D quantum rings.
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2 Transition to one-dimensional models

2.2.1 The radial wave function of the ground state

As in an infinite square potential well, the energy levels for the eigenfunctions
in the radial direction are spaced like the squared radial quantum number. The
energy levels diverge like ε−2 in the limit of vanishing ring width. For narrow
rings, in which we are especially interested, the energy levels stemming from the
different radial eigenfunctions are far apart. The energy bands stemming from
the azimuthal structure of the ring do not depend (to leading order) on the ring
width. We are interested in the low-temperature behavior of the system, hence we
only determine the ground-state radial wave function in this section. The states
built from the first excited radial wave function are considered energetically too
high. Consequently, in the course of this section, the set of quantum numbers ν
will be reduced to a set of quantum numbers for the azimuthal eigenstates.

The radial part of the Schrödinger equation is solved by Bessel functions of the
first and second kind:

Pν(r) = AJξν

(√

η
(0)
ν r

)

+BYξν

(√

η
(0)
ν r

)

. (2.18)

The boundary conditions are

Pν

(

1± 1

2

ε

ρ0

)

= 0. (2.19)

One condition sets the factor A in the linear combination of Bessel functions to a
certain value. It involves finding the zeros of the function

Jξν

[√

η
(0)
ν

(

1− 1

2

ε

ρ0

)]

Yξν

[√

η
(0)
ν

(

1 +
1

2

ε

ρ0

)]

− Jξν
[√

η
(0)
ν

(

1 +
1

2

ε

ρ0

)]

Yξν

[√

η
(0)
ν

(

1− 1

2

ε

ρ0

)]

(2.20)

to determine B. These zeros are not analytically known. Consequently, it is not
possible to write down the exact solution of this problem in terms of a linear
combination of Bessel functions. We could use the asymptotic expansion of the
Bessel functions to determine the ground-state solution P0 fulfilling the boundary
conditions in the limit of vanishing ring width, but the author chose to expand
the differential equation itself asymptotically in orders of ε, because this method
allowed for an easier implementation in Mathematica (see appendix B.1). The
solution should depend on the variable ρ̄. Taking a look at the scalar product for
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2.2 A ring threaded by a flux tube

the radial wave functions,

(Pµ, Pν) = 2π

ρ0+ε/2
∫

ρ0−ε/2

ρP ∗µPν dρ

= 2πε

1
2
∫

− 1
2

ρ0P
∗
νPµ dρ̄+ 2πε2

1
2
∫

− 1
2

ρ̄P ∗νPµ dρ̄

= ε (Pµ, Pν)s + ε2 (Pµ, Pν)a ,

(2.21)

it becomes clear that the lowest order in ε of the normalized radial wave functions
is 1/
√
ε. We have split the scalar product into two parts. One contains a constant,

which is a symmetric function, and the other contains the asymmetric function ρ̄.
Therefore, the indices s and a were chosen. The lowest order of the Hamiltonian
and hence the energy is ε−2. Using this information, the radial wave functions and
the energy levels are expanded in the following way

Pν =
1√
ε

∞
∑

n=0

εnPnν ,

η(0)
ν =

ρ2
0

ε2

∞
∑

n=0

εnη
(0)
(n−2)ν .

(2.22)

The Schrödinger equation for the radial wave function,
[

ρ2
0

ε2
∂2

∂ρ̄2
+

2ρ0ρ̄

ε

∂2

∂ρ̄2
+
ρ0

ε

∂

∂ρ̄
+ ρ̄2 ∂

2

∂ρ̄2
+ ρ̄

∂

∂ρ̄
+

+

(

1 + 2ρ̄
ε

ρ0

+ ρ̄2 ε
2

ρ2
0

)(

1

ε2
η

(0)
−2ν +

1

ε
η

(0)
−1ν + η

(0)
0ν + · · ·

)

− ξ2
ν

]

×

×
(

1√
ε
P0ν +

√
εP1ν + ε

3
2P2ν + · · ·

)

= 0, (2.23)

separated into different orders of ε is

0 =ε−
5
2

(

ρ2
0P0ν + η

(0)
−2νP

′′

0ν

)

+ ε−
3
2

[

2ρ0ρ̄P
′′

0ν + ρ0P
′

0ν + ρ2
0P
′′

1ν +

(

2
ρ̄

ρ0

η
(0)
−2ν + η

(0)
−1ν

)

P0ν + η
(0)
−2νP1ν

]

+O
(

ε−
1
2

)

.

(2.24)

The normalization condition,
1 = ‖Ψν‖2

=
∑

m,n

εm+n+1 (Pmν , Pnν)

= (P0ν , P0ν)s + ε (P0ν , P0ν)a + 2ε (P0ν , P1ν)s +O
(

ε2
)

,

(2.25)
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2 Transition to one-dimensional models

has to be checked for every order separately. Solving the differential equations for
the different orders, applying the boundary condition and normalization conditions
leads to the radial ground-state wave function,

Pν(ρ̄) =
cosπρ̄
√
πρ0ε

−
√
ερ̄

2
√
πρ

3
2
0

cosπρ̄+
3ε

3
2 ρ̄2

8
√
πρ

5
2
0

cosπρ̄

− ε
5
2

[

5ρ̄3 cosπρ̄

16
√
πρ

7
2
0

+
(ξ2
ν − 1

4
)
[

ρ̄ cosπρ̄+ π(ξ2
ν − 1

4
) sinπρ̄

]

4π
5
2ρ

7
2
0

]

+O
(

ε
7
2

)

=
cosπρ̄

√

π(ρ0 + ερ̄)ε
− ε

5
2

(ξ2
ν − 1

4
)
[

ρ̄ cosπρ̄+ π(ξ2
ν − 1

4
) sinπρ̄

]

4π
5
2ρ

7
2
0

+O
(

ε
7
2

)

,

(2.26)

which still depends on the azimuthal state ν. The wave functions of a ring in a
homogeneous magnetic field are expanded in a power series of the ring width in
the next section. For very thin rings, the solution of the two systems is identical.
We take a look at the deviations for finite ring width in the next section. For the
perturbation theory, which is carried out to second order, it is sufficient to use the
following approximation to the radial ground-state wave function:

P0 =
cosπρ̄

√

π(ρ0 + ερ̄)ε
+O

(

ε
5
2

)

, (2.27)

which does not depend on the azimuthal state.
The energy levels of the eigenstates that are realized by a product of the ra-

dial ground-state wave function and the available spectrum of azimuthal wave
functions are

η(0)
ν = π2

(ρ0

ε

)2

+

[

1 +
π2 − 6

4π2

(

ε

ρ0

)2
]

(

ξ2
ν −

1

4

)

+O
(

ε4
)

. (2.28)

For further details on the calculation see theMathematica notebook included in
appendix B.1. Obviously, the problem is symmetric in the ring width ε. Therefore,
only even powers of ε can be present in the energy. The energy levels or bands of
the 1D Kronig-Penney ring are ξ2

ν . We calculate this quantity in the next section.

2.2.2 The azimuthal wave function

The azimuthal wave function is determined in this section. If a magnetic flux tube
is present in the ring, the wave function is altered by a phase factor independent
of the ring width. This is an important result, because it proves the validity of
the Peierls substitution for finite ring widths.

The azimuthal part of the Schrödinger equation,
[

(

∂

∂ϕ
+ iβ

)2

+ ξ2
ν − v(ϕ)

]

χν(ϕ) = 0, (2.29)
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2.2 A ring threaded by a flux tube

is solved by a wave function that includes a Peierls phase factor:

χν = e−iβϕγν . (2.30)

Inserting this into Eq. (2.29) yields

γ
′′

ν + (ξ2
ν − v)γν = 0. (2.31)

Because the wave function χν is single valued, we have

χν(2π) = e−2πiβγν(2π) = γν(0) = χν(0). (2.32)

Therefore, the new wave function γν changes by a factor

γν(2π) = e2πiβγν(0) (2.33)

if the coordinate is moved around the ring.
The solution between the delta functions of the potential v is

γν(ϕ) = Ane
iξν(ϕ−na) +Bne

−iξν(ϕ−na), for a(n− 1) ≤ ϕ < an. (2.34)

Integrating over the wave function γ at the places of the delta functions results in
conditions how the first derivative of the wave function has to be connected going
from one sector to another. The continuity of the wave function results in another
set of equations:

γν (na+ ε)− γν (na− ε) = 0,

γ′ν (na+ ε)− γ′ν (na− ε) = −2mρ2
0V0

~2
γν (na) , n ∈ {0, 1, . . . , N − 1}.

(2.35)

These conditions can be written in the form of a transfer matrix T1 that connects
the coefficients in one sector of the ring (An, Bn) to the coefficients in the next
sector of the ring (An+1, Bn+1):

(

An+1

Bn+1

)

= T1

(

An
Bn

)

=





(

1 +
imρ2

0V0

~2ξν

)

eiξνa
imρ2

0V0

~2ξν
e−iξνa

− imρ2
0V0

~2ξν
eiξνa

(

1− imρ2
0V0

~2ξν

)

e−iξνa





(

An
Bn

)

.

(2.36)

On the other hand, the Hamiltonian D commutes with every translation operator,

Tn Ψ(ρ, ϕ) = Ψ(ρ, ϕ+ an), (2.37)

due to the periodicity of the potential v. It can be easily shown, that the eigen-
values of the translation operators are phase factors eilan, l ∈ Z. This is a part of
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2 Transition to one-dimensional models

the Bloch theorem. The single-valuedness of the wave function χν in combination
with the Peierls phase factor

TN χν(ϕ) = χν(ϕ+ 2π)

= ei(k−β)2πe−iβϕγν(ϕ)

!
= e−iβϕγν(ϕ).

(2.38)

leads to the condition
ei(k−β)2π = 1. (2.39)

Therefore, the Bloch momenta k are
k = ν + β, ν ∈ Z. (2.40)

The possible Bloch momenta of the azimuthal wave function are thus shifted by
the magnetic field. The total phase factor that can be extracted from the wave
function and contains the magnetic field and the Bloch momentum explicitly does
not change as the magnetic field varies. The change of the magnetic field is
compensated by the change of the Bloch momenta. The rest of the wave function
changes, because of a change in the conditions that determine ξν , A0 and B0. The
eigenvalues of T1 are e±ika. This leads to a condition for the trace of the transfer
matrix:

eika + e−ika = Tr T1 =

(

1 +
imρ2

0V0

~2ξν

)

eiξνa +

(

1− imρ2
0V0

~2ξν

)

e−iξνa,

cos ka = cos ξνa−
mV0ρ

2
0

~2ξν
sin ξνa.

(2.41)

This relation can be inverted numerically to give ξν(k) [see Fig. 2.2]. The rela-
tion between the coefficients A0 and B0 is determined by the eigenvectors of T1.
The normalization determines the coefficients up to a global phase factor. The
normalization condition for A0 and B0 is

2π
∫

0

χ∗νχν dϕ =N

2π/N
∫

0

(

A0A
∗
0e
−2 Im ξνϕ +B0B

∗
0e

2 Im ξνϕ

+A0B
∗
0e

2iRe ξνϕ +B0A
∗
0e
−2iRe ξνϕ

)

dϕ

=2π.

(2.42)

The complete wave function is
χν(ϕ) = e−iβϕeikna

(

A0e
iξν(ϕ−na) +B0e

−iξν(ϕ−na)
)

, for a(n− 1) ≤ ϕ < an

= e−iβϕeiks(ϕ)
(

A0e
iξν(ϕ−s(ϕ)) +B0e

−iξν(ϕ−s(ϕ))
)

.
(2.43)

Here s(ϕ) = abϕ/ac, where bxc denotes the function that gives the integer part
of a rational number x.

The azimuthal wave function is exact for all ring widths. Consequently, the
Peierls substitution is exact for all rings threaded by a flux tube in the above
described way.
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2.2 A ring threaded by a flux tube
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Figure 2.2: The band structure of the Kronig-Penney model.

2.2.3 Discussion of results

The energy levels are determined by the equation (2.31), which does not depend
on the magnetic flux, and the boundary condition (2.33). It is obvious that the
energy levels are periodic in the magnetic flux β with a period 1, i.e., a period of
h/e for the flux that is not scaled by the flux quantum. By taking the complex
conjugate of (2.31) and (2.33) we obtain: The energy levels are even functions of
β. These are, except for a factor of 1/2 in the period with respect to the flux, the
theorems derived by Byers and Yang in 1961 (BY61) for superconducting rings
in magnetic fields. A superconducting ring in a homogeneous field corresponds
in many respects to a flux tube in a normal conducting ring with phase coherent
motion of electrons, as, due to the Meissner effect, the magnetic field in the ring is
compensated by surface currents. Byers and Yang further state that the period-
icity and evenness of the energy levels remains valid if the spin of the electrons is
introduced. The operation of complex conjugation in the proof of the evenness of
the energy levels had to be replaced by the time reversal operation and the proof
depended on the time reversal invariance of the interaction, they write.

The same theorems were derived in 1970 by Bloch (Blo70) for a superconducting
ring with a barrier, looking not at the total magnetic flux in the ring, but the flux
of the external magnetic field. He also pointed out that the current in the ring,
which is the derivative of the free energy of the ring with respect to the flux is an
odd function with respect to the magnetic flux of the external magnetic field.

In 1983, Büttiker, Imry and Landauer (BIL83) proved the same theorems for
one-dimensional metal rings, neglecting the Zeeman effect. Up to now we looked
at a two-dimensional ring, threaded by a flux tube. In the next chapter, we will
look at a two-dimensional ring in a homogeneous magnetic field. One expects that
the simple periodic dependence of all physical quantities in the ring on the flux
will not survive.
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2 Transition to one-dimensional models

Adding the proper prefactors to the dimensionless quantities we derived, the
momentum of the νth stationary state is

pν = ~
2π

L
kν =

~
ρ0

(

ν +
φ

φ0

)

. (2.44)

The momentum thus increases linearly with the flux. The group velocity in the
circular motion of the νth state can be approximated as

V g
ν =

∂Eν
∂p

=
ρ0φ0

~
∂Eν
∂φ

=
2πρ0

|e|
∂Eν
∂φ

. (2.45)

An electron occupying the νth energy level contributes

jν =
eV g

ν

2πρ0

= −∂Eν
∂φ

(2.46)

to a current which is itself periodic. This current, carried by an electron in the
νth level induces a magnetic moment M = jνA, which has been observed, e.g., in
the experiments of Lévy (Lév00).

On the other hand, the quantum number ν is the quantum number of the
canonical angular momentum L = r× p, whereas

λ = ν + φ/φ0 (2.47)

is the eigenvalue of the kinetic angular momentum Λ = r × π, which can take
every real value.

The energy levels of the 2D ring threaded by a flux have been derived as

E(0)
ν =

~2

2mρ2
0

{

π2
(ρ0

ε

)2

+

[

1 +
π2 − 6

4π2

(

ε

ρ0

)2
]

(

ξ2
ν −

1

4

)

}

+O
(

ε4
)

(2.48)

to sub-sub-leading order in the ring width. If we subtract the divergence and
constants (ε→ 0), this equation simplifies to the well known energy levels of a 1D
ring,

Eν =
~2ξ2

ν

2mρ2
0

. (2.49)

In the limit of vanishing potential V0, the familiar result (CP94) for the energy
levels for a 1D free-electron ring is recovered (see Fig. 2.3),

Eν =
~2

2mρ2
0

λ2. (2.50)

The effect of the ring width ε in Eq. 2.48 is completely contained within a prefactor
to the one-dimensional energy levels ξν . Hence, the structure of the energy levels
of a 2D ring threaded by a flux tube can be quantitatively described by a 1D
ring that captures the azimuthal structure with effective parameters. In chapter
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2.2 A ring threaded by a flux tube
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Figure 2.3: The electronic spectrum of the 1D ring threaded by a flux tube is
periodic in the number of flux quanta threading the ring. The periodic
Kronig-Penney potential opens gaps at the wave vectors which are
multiples of π/L and correspond to fluxes which are multiples of half
a flux quantum.

4.3.2, we describe the azimuthal structure of the π-electrons in the ring-shaped
benzene molecule by a Hubbard model with empirically determined parameters.
This would be pointless, if it was not possible to describe a thick ring by an
effective one-dimensional one.

Without magnetic flux in the ring, the minima of the energy bands are at ν = 0
and the energy bands are symmetric about ν = 0, a natural consequence of time-
reversal symmetry. If flux penetrates the ring, the minima of the bands are shifted
to ν = −φ/φ0.

The probability density to find an electron in the νth state at a specific distance
from the origin within the ring is

dν(ρ̄) = 2πε(ρ0 + ερ̄)|Pν(ρ̄)|2. (2.51)

Taking a glance at Eq. (2.26), we notice that the probability density is shaped like
a squared cosine and reaches its maximum at the middle of the ring, independent
of the strength of the flux tube threading the ring, if only the first three orders in ε
are considered. The contribution to the order of ε 5

2 reveals two things: The appro-
ximation is trustworthy only for moderately large values of the azimuthal energy
ξ2
ν and the average radius of the radial wave function is enlarged by the velocity of
the electrons. This effect is graphically shown in Fig. 2.4. It is interesting to note
that for a 2D ring, even without the potential (V0 = 0), the azimuthal motion
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2 Transition to one-dimensional models

is not decoupled from the radial motion. For a 2D straight wire, the longitud-
inal state does not influence the transversal state. Here, the situation is different.
Every different azimuthal state has a different radial eigenfunction. Thus, it is not
surprising that a deviation from the parabolic behavior of the azimuthal bands
was found by Tan and Inkson for another radial confinement potential (TI96).
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Figure 2.4: The probability density to find an electron at a specific radius is plotted
for two different values of flux in the ring for the stationary ground
state. The solid curve is for zero flux, whence the probability density
is centered at the middle of the ring. The dashed curve is for a flux
tube of 100 flux quanta in the ring, or equivalently for an kinetic
angular momentum of 100~. The velocity of the electrons forces the
electrons more to the outer bound of the ring. The radius and the
width (ρ0 = 200nm, ε = 20nm) are chosen to be of the same order
of magnitude as the ones used in experiments on quantum rings in
heterostructures.

The numerical value of the averaged radius in the νth level of a ring without
azimuthal potential,

〈ρ̄〉ν =

0.5
∫

−0.5

ρ̄dν(ρ̄)dρ̄, (2.52)

has been evaluated and plotted against the kinetic angular momentum, which is
proportional to the group velocity of the azimuthal wave packet as shown above
(see Fig. 2.5). The shift of the radius to the outer half of the ring (ρ̄ > 0) is
symmetric about λ = 0 which corresponds to zero velocity of the electrons. It
does not matter whether the electrons move right or left around the ring. This
effect has nothing to do with the Lorentz force. The magnetic induction is zero in
the space where the electrons are moving. Hence, also the Lorentz force is zero.
This effect is related to the centrifugal force that a particle undergoing a circular
motion experiences.
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2.3 A ring in a homogeneous magnetic field
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Figure 2.5: The shift of the average value of the radius of the radial wave function
as a function of the kinetic angular momentum for a ring with a radius
of ρ0 = 200nm and a width of ε = 20nm. There is no azimuthal po-
tential on the ring. The positive values of the averaged radius indicate
a shift of the probability density from the center to the outer half of
the ring.

2.3 A ring in a homogeneous magnetic field

The ring of vanishing ring width and the Peierls substitution are approximations
for the two-dimensional ring in a homogeneous field. We calculate the first-order
corrections with respect to the ring width. Therefore, we apply perturbation
theory and expand the wave functions and eigenenergies in terms of the ring
threaded by a flux tube.

The homogeneous magnetic field,

B = Bêz,

is represented by the vector potential,

A =
1

2
B× r.

The terms in the Hamiltonian (2.1) depending on the vector potential become
i~e
m

A · ∇ =
i~e
2m

(B× r) · ∇

=
i~e
2m

B · (r×∇)

= − e

2m
B · L

=
i~e
2m

B
∂

∂ϕ

(2.53)
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2 Transition to one-dimensional models

and

e2

2m
A2 =

e2

8m
(B× r)2

=
e2

8m

[

B2r2 − (B · r)2
]

=
e2

8m
B2ρ2.

(2.54)

The Schrödinger equation is

0 = (H−Eν)Ψν

= − ~
2

2m

(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂ϕ2
− ieB

~
∂

∂ϕ

−e
2B2

4~2
ρ2 − 1

ρ2
v(ϕ) +

ην
ρ2

0

)

Ψν .

(2.55)

If we again call the dimensionless flux in the ring

β = πρ2
0B
|e|

2π~
=
|e|Bρ2

0

2~
, (2.56)

the dimensionless Schrödinger equation becomes (with the definitions from the
last section):

0 = (D +ην) Ψν

=

[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
+ 2iβ

∂

∂ϕ
− β2r2 − v(ϕ)

r2
+ ην

]

Ψν

=

[

D(0) +2iβ

(

1− 1

r2

)

∂

∂ϕ
+ β2

(

1

r2
− r2

)

+ ην

]

Ψν .

(2.57)

2.3.1 Perturbation of the ground-state wave function

The operator D can be expanded in terms of ε,

D =
∞
∑

n=0

εn D(n) . (2.58)

The first orders (−2 to 0) of the expansion are contained in D(0). We expect the
deviation from the Peierls factor in the wave function to appear in second-order
perturbation theory. The first- and second-order perturbations are

D(1) =
4βρ̄

ρ0

(

−β + i
∂

∂ϕ

)

,

D(2) =
2βρ̄2

ρ2
0

(

β − 3i
∂

∂ϕ

)

.

(2.59)
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2.3 A ring in a homogeneous magnetic field

Also the wave function and the eigenvalues of D can be expanded in terms of ε:

Ψν =
1√
ε

∞
∑

n=0

εnΨ(n)
ν ,

ην =
∞
∑

n=0

εnη(n)
ν .

(2.60)

The correction to the eigenstates is expanded in terms of the unperturbed eigen-
states:

Ψ(1)
ν =

∑

l

a
(1)
lν Ψ

(0)
l ,

Ψ(2)
ν =

∑

l

a
(2)
lν Ψ

(0)
l .

(2.61)

The corrections to both, energy and eigenstates, are now calculated explicitly. In
the unperturbed model containing only a flux tube through the ring, the levels
of the radial wave function are to lowest order of ε spaced like n2/ε2. Thus,
there is a large energy gap between the lowest band and the following one for
narrow rings. We are only interested in the first- and second-order corrections to
the ground-state wave function and energy. They are not influenced by excited
radial states. The energy levels of the unperturbed problem contribute to the
second-order perturbation expansion coefficient of the energy eigenvalues and to
the first-order expansion coefficient of the eigenstates through a fraction,

1

η
(0)
l − η

(0)
ν

=
1

(

c1
ε2

+ c2 + c3ε2
)

−
(

c4
ε2

+ c5 + c6ε2
)

=

{

O (ε2) , c1 6= c4,

O (ε0) , c1 = c4.

(2.62)

This energy fraction is multiplied with the expectation value of the perturbing
operator. The constants ci do not depend on the ring width. This expectation
value is of the order ε0. Hence, the excited radial states lead to a fourth-order con-
tribution to the eigenenergies and to a third-order contribution to the eigenstates.
This is the reason why we restrict the unperturbed states to the products of the
azimuthal states with the radial ground-state wave function [see Eq. (2.27)]:

Ψ(0)
ν = P0χν . (2.63)

The set of quantum numbers ν simplifies to one quantum number purely describing
the azimuthal dependency of the wave function. We apply the usual formulas of
perturbation theory to obtain the corrections to the energy and the states. The
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2 Transition to one-dimensional models

first-order energy correction correction yields:

η(1)
ν = −

〈

Ψ(0)
ν ,D(1) Ψ(0)

ν

〉

= −

1
2
∫

− 1
2

dρ̄ ε(ρ0 + ερ̄)
cos2(πρ̄)

π(ρ0 + ερ̄)ε
ρ̄

2π
∫

0

dϕ χ∗ν
D(1)

ρ̄
χν

= 0.

(2.64)

The second-order energy corrections are:

η(2)
ν = 0−

〈

Ψ(0)
ν ,D(2) Ψ(0)

ν

〉

= −

1
2
∫

− 1
2

dρ̄ ε(ρ0 + ερ̄)
ρ̄2

π
cos2(πρ̄)

2π
∫

0

dϕ χ∗ν
D(2)

ρ̄2
χν

= −π
2 − 6

12π3

β

ρ2
0

2π
∫

0

dϕ χ∗ν

(

β − 3i
∂

∂ϕ

)

χν

= −π
2 − 6

12π3

β

ρ2
0

[

2πβ − 3i
(

−2πiβ + 2πik |A∗0 +B0|2
)]

= −π
2 − 6

6π2

β

ρ2
0

(

−2β + 3k |A∗0 +B0|2
)

.

(2.65)

The result of equation (B.2) was used in the penultimate identity. Adding the
correction to the unperturbed energy levels, we obtain the energy levels of a two-
dimensional quantum ring in a homogeneous magnetic field to sub-sub-leading
order:

ην =η(0)
ν +

(

ε

ρ0

)2
π2 − 6

6π2

(

2β2 − 3βk |A∗0 +B0|2
)

+O(ε4)

=π2
(ρ0

ε

)2

+ ξ2
ν −

1

4
+
π2 − 6

4π2

(

ε

ρ0

)2 [

ξ2
ν −

1

4

+
4

3
β2 − 2βk |A∗0 +B0|2

]

+O(ε4).

(2.66)

For the eigenstates, there is also only a second-order contribution. The first-order
expansion coefficients are zero:

a
(1)
lν =

〈

Ψ
(0)
l ,D(1) Ψ

(0)
ν

〉

η
(0)
l − η

(0)
ν

= 0 for l 6= ν,

a(1)
νν = 0.

(2.67)
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2.3 A ring in a homogeneous magnetic field

The second-order coefficients are:

a
(2)
lν = 0 +

〈

Ψ
(0)
l ,D(2) Ψ

(0)
ν

〉

η
(0)
l − η

(0)
ν

=

(

π2 − 6

6π2ρ2
0

)

−2β2 + 3kβ |A∗0 +B0|2

ξ2
l − ξ2

ν

for l 6= ν,

a(2)
νν = 0.

(2.68)

The physical meaning of these results is discussed in the next section.

2.3.2 Interpretation of the result

If the Kronig-Penney potential on the ring is switched off (V0 = 0), the resulting
energy levels are:

ην = η(0)
ν +

π2 − 6

4π2

(

ε

ρ0

)2 [

−2

3
β2 − 2βν

]

+O(ε4). (2.69)

The azimuthal energy ξ2
ν was replaced by [ν + β(ρ̄)]2.

A result with almost the same analytical structure can be obtained in an easier
but nonsystematic way. This result is just used for comparison with the exact
perturbation theory. In a classical picture, we can imagine the electrons moving
at different radii of the ring. Circles with different radii enclose different values of
magnetic flux in a homogeneous magnetic field. The electrons prefer to move at the
radii where their probability density dν(ρ̄) is high. Thus, it should be possible to
describe the energy levels for the two-dimensional ring in a homogeneous magnetic
field by averaging the following energy levels of a ring threaded by a flux tube:

η(0)
ν (ρ̄) = π2

(ρ0

ε

)2

+

[

1 +
π2 − 6

4π2

(

ε

ρ0

)2
]

[

(ν + β(ρ̄))2 − 1

4

]

+O
(

ε4
)

. (2.70)

The magnetic flux is now depending on the radius:

β(ρ̄) = β

[

1 + 2
ε

ρ0

ρ̄+

(

ε

ρ0

)2

ρ̄2

]

. (2.71)

By averaging the energies,

η̄(0)
ν =

1
2
∫

− 1
2

dρ̄ dν(ρ̄)η(0)
ν (ρ̄)

=η(0)
ν +

(

2νβ + 6β2
)

[

ε

ρ0

]2
1
2
∫

− 1
2

2 cos2(πρ̄)ρ̄2 dρ̄ +O
(

ε4
)

=η(0)
ν +

π2 − 6

4π2

(

ε

ρ0

)2 [

2β2 +
2

3
νβ

]

+O
(

ε4
)

,

(2.72)
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2 Transition to one-dimensional models

a result similar to Eq. (2.69) is obtained, if terms of order higher than ε2/ρ2
0

are neglected. Prefactors are different from those resulting from the systematic
perturbation expansion.

The expansion coefficients of the perturbed states of the ring in the homogen-
eous field [see Eq. (2.68)] depend explicitly on the magnetic field. Therefore, it is
not possible any more to describe the effect of the magnetic field completely by
the Peierls phase factor. In the classical picture introduced above, the electrons
moving on circles with different radii acquire different phases. Thus, the electrons
on different circles are able to interfere with each other, and although the clas-
sical approximation seems to be simplistic and the result is not the exact result
obtained from perturbation theory, it also underlines the breakdown of the Pei-
erls substitution. The correction to the Peierls substitution can be systematically
derived with the perturbation expansion shown above.

2.4 Corrections

We have studied quantum rings containing noninteracting electrons. The effect
of the electron-electron interaction is very important. It will be considered in the
following chapters. The electron-electron interaction can influence the direction in
which the persistent current is flowing in a quantum ring (see Sec. 3.3). It is also
very important for the occurrence of spontaneous persistent currents (see Sec. 4).

In systems threaded by a flux tube, the Zeeman interaction of the spins of
the electrons with the magnetic field is zero. However in homogeneous magnetic
fields, in which most experiments are carried out, the Zeeman interaction results
in an important contribution to the energy of the quantum rings. In addition, in
high magnetic fields, relativistic corrections gain importance. These effects will
be discussed in the next sections.

2.4.1 Zeeman interaction

In comparison to the above applied Schrödinger theory, the Pauli equation, being
the nonrelativistic limit of the Dirac equation, includes the Zeeman interaction
between the magnetic field and the intrinsic magnetic moment of the electron due
to its spin. This interaction energy is

−gS
e

2m
S ·B. (2.73)

This term can be written in terms of the flux, if the field points in the z-direction:

−gS
~

2mρ2
0

Sz
φ

φ0

. (2.74)

A discussion of the effects of this term is found in Ref. (KKM).
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2.4 Corrections

Spin magnetism is a large contribution to the magnetism of quantum rings in
strong magnetic fields. However, it is neglected in this thesis. It is a linear con-
tribution for quantum rings in homogeneous magnetic fields. If a quantum ring
is threaded by a flux tube, the magnetic field B does not penetrate the region
where the electrons move. Therefore, the interaction energy with the spins of
the electrons is zero. Experimentally, however, it might be difficult to produce a
situation where the magnetic field is zero in the space of the quantum ring where
the electrons are moving. Thus, the Zeeman interaction is very important for
comparison with experiments in homogeneous magnetic fields. If, however, the
total spin of the electrons on the quantum ring is zero, the Zeeman interaction
is also zero in the limit of weak fields. The behavior in weak homogeneous fields
can be extracted from calculations excluding the Zeeman interaction for systems
without a resulting spin component in the direction of the magnetic field. This is
what we will do in one of the last chapters, extracting the part of the magnetic
susceptibility of benzene that stems from persistent currents. The total spin of the
π-electrons in benzene is zero, therefore our calculations are valid in weak homo-
geneous fields. In increasingly strong homogeneous fields, the Zeeman interaction
induces an increasing number of spin flips and eventually dominates the energy of
the system completely.

2.4.2 Relativistic corrections

The speed of electrons in mesoscopic rings is of the order of the speed of electrons
in the underlying solids (v/c ≈ 10−2) (Lév00). The relativistic corrections are of
the order v2/c2. These corrections are important at high magnetic field strengths.
The future work on the topic should focus on the relativistic corrections, in order
to put the following arguments on a sufficiently solid base and to measure the
importance of the corrections quantitatively.

The stronger the magnetic fields are, the more important the relativistic cor-
rections become. In extremely strong magnetic fields, the usual chemical bonds
between atoms and therefore quantum rings cease to exist. In a magnetic field, the
transverse motion of an electron is quantized into Landau levels. The cyclotron
radius (the characteristic size of the wave packets) becomes as small as the Bohr
radius at a magnetic field strength of B = 2.56 × 105 T. The radius of the wave
packets is then below the bond length of the material that forms the quantum
rings and the bonds are broken (Lai01). Magnetic fields of this strength are not
producible in present day laboratories, they are typically found on surfaces of
neutron stars. The highest fields obtained on the earth are approximately 1000 T
with flux compression by explosives. The typical pulse duration of such a strong
magnetic field is several microseconds.

In the section treating the benzene quantum rings, we show a plot of the per-
sistent currents up to one flux quantum in the benzene ring. It is not sure whether
the molecule would still exist in a homogeneous field of 8×104 T, which is needed
to force one flux quantum inside of the benzene ring. The purpose of these calcu-
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2 Transition to one-dimensional models

lations is to show the principal physical phenomena that could exist in quantum
rings. The calculations are only valid in the low field limit or for thin flux tubes
in the ring. However, for larger rings it is possible to force one quantum of mag-
netic flux inside of a ring at weaker fields (the flux increases with the squared
radius in a homogeneous field). With the method of exact diagonalization it was
not possible to do the calculations for a larger number of electrons. With future
nano technology it should be possible to tailor coupled quantum dots to form a
quantum ring with a larger radius but the same number of relevant electrons and
the same hopping amplitude between the dots.

Spin-orbit coupling

Relativistic corrections include the spin-orbit coupling. For an arbitrary real-
valued central potential, V (ρ), the spin-orbit coupling contribution to the Hamil-
tonian is

1

m2c2

1

ρ

dV

dρ
L · S. (2.75)

The potential that was used to describe the confinement of the electrons on the
quantum ring is constant on the actual ring. Although the first derivative of
the potential diverges at the edges of the ring, the probability to find an electron
vanishes at these edges. The limiting process should be applied rigorously to reach
a conclusion whether there is a spin-orbit coupling in the above described model
or not.

For more realistic potentials there surely is a spin-orbit coupling effect. For
the π-electrons of benzene, e.g., the spin-orbit coupling should be less important
than for a hydrogen atom. The radius of the circular path of the π-electrons is
large (140 pm) compared to the radius of the low-lying energy eigenstates of the
hydrogen electron (50 pm). The 1/ρ-dependence of the spin-orbit coupling thus
leads to an approximately three times lower spin-orbit coupling effect than in the
lowest lying states of the hydrogen electron. The inner electrons of the carbon
atoms in the benzene molecule screen the Coulomb potentials of the carbon nuclei.
This diminishes the dV

dρ
factor in the spin-orbit coupling.

Most importantly the factor 1/c2 diminishes the magnitude of the spin-orbit
coupling for weak magnetic fields. In strong fields, the velocity of the electrons
increases, thus increasing the angular momentum.

Darwin term

The Darwin term is
~2

8m2c2
∆V (ρ). (2.76)

In the hydrogen atom, the Darwin term only contributes to the states without
angular momentum, because the Coulomb potential in combination with the
Laplacian leads to a delta function, which only influences the states whose wave
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2.4 Corrections

functions penetrate the origin. In a quantum ring, the Laplacian of the central
confining potential is not singular. Therefore, it should influence all states, no
matter what their angular momentum is. However, the factor 1/c2 reduces the
importance once again.

Kinetic energy and relativistic mass increase

The relativistic correction to the kinetic energy is

− p4

8m3c2
. (2.77)

This correction and the relativistic mass increase are present in quantum rings.
However, these corrections do not lead to any new physical phenomena. The
physical effects being present in the model should only be displaced to other
values of the magnetic field by the relativistic mass increase.

In conclusion, the spin-orbit coupling seems to be the most interesting relativ-
istic correction to the energy of quantum rings. Due to its dependence on the
angular momentum and the electron spin, significant new physical phenomena
can be expected by the inclusion of this term, whereas the other terms seem to
merely renormalize the parameters of the model.
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3 Persistent currents and the Drude
weight

In this chapter, the Drude weight—a quantity measuring the strength of the
persistent current in a quantum ring—is examined for different systems. With
the help of the Drude weight, the direction in which the persistent current in a
quantum ring flows can be determined. After deriving the Drude weight as the
singular part of the electrical conductivity, the Drude weight is calculated for the
periodic Anderson model. Within this model, a negative Drude weight appears
for certain fillings and sizes of the ring. A negative Drude weight is a hint at a
paramagnetic persistent current in a quantum ring, thus enhancing the external
magnetic field. A paramagnetic ring current is totally unexpected if we look at
classical conducting rings. Classical conducting rings obey Lenz’s law and there-
fore a current is induced that counteracts the external magnetic field. However,
Lenz’s law applies to the induction of currents in varying magnetic fields, whereas
we look at the persistent currents in quantum rings in static magnetic fields that
stem from the Aharonov-Bohm effect. However, paramagnetic ring currents are
not a very familiar effect. Therefore, in the following sections, the Drude weight
is calculated at length making use of different definitions and thus consolidating
the negative Drude weight for different finite systems. In the thermodynamic
limit, the Drude weight, being related to the conductivity of a system, is of course
positive semidefinite.

According to our calculations, a negative Drude weight either stems from an
open-shell configuration of the ground state, where the states at the Fermi surface
are not completely filled and Umklapp scattering can transfer electrons from one
side of the Fermi surface to the other, or a band structure which is not particle-hole
symmetric. The goal of this section is to elucidate these criteria, and to under-
line them by giving some examples of model systems that exhibit paramagnetic
response.

3.1 Transport quantities

3.1.1 The Drude weight and the Meissner fraction

The easiest accessible experimentally measurable transport quantity is the dc res-
istivity ρ = 1/σ(0), where σ(ω) denotes the dynamical electrical conductivity. The
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3 Persistent currents and the Drude weight

conductivity has been derived within linear response theory by Kubo. In systems
with correlated electrons one has to take into account besides the regular part of
the conductivity σreg also a singular contribution,

σ(ω) = 2πDδ(ω) + σreg(ω), (3.1)

where D represents the Drude weight. At zero temperature the Drude weight is
the central quantity determining thedc charge transport. As formulated by Kohn,
the Drude weight—which is also called the charge stiffness—can be expressed
as the second derivative of the ground-state energy with respect to the applied
magnetic flux,

D =
N

2

∂2E0

∂φ2

∣

∣

∣

∣

φ=0

, (3.2)

where N is the system size. A finite Drude weight is characteristic for a conductor
or a metal. For an insulator, whether it be a band insulator (due to a filled band of
electrons) or a Mott-Hubbard insulator (due to strong electron-electron repulsion),
the Drude weight vanishes. At finite temperature, the Drude weight vanishes also
for normal conductors. However, a finite Drude weight at finite temperature would
be a signature of an ideal conductor, which does not show any energy dissipation.
This case is realized by a number of nontrivial integrable many-fermion models.
All integrable many-fermion models are one-dimensional (ZP03).

On the other hand, in a mesoscopic system, the persistent current is

j = −∂F
∂φ

. (3.3)

Therefore, the charge stiffness D provides a measure for the persistent current for
small flux since j = −2Dφ/N at zero temperature. At finite temperature, the
free energy F of the system is not the ground-state energy of the system and the
Drude weight is not simply the first derivative of the persistent current for small
flux. However, a quantity being the first derivative of the persistent current for
small flux can be defined. This is the Meissner fraction,

ρS =
∂2F

∂φ2

∣

∣

∣

∣

φ=0

. (3.4)

Although both ρS and D are related to the current correlation function, which will
we explained in the following sections, they correspond to different limits besides
the different prefactor. The Meissner fraction ρS being a thermodynamic quantity
corresponds to the limit ω → 0 first and then q → 0, whereas D corresponds to
the limit taken in the reverse order. For finite temperature the two quantities are
distinct. For a macroscopic system ρS measures the superfluid density and will
be zero for a non-superfluid system, whereas D can be nonzero if the system is
perfectly conducting but not superconducting (e.g., free electrons in the absence
of impurities). If one has a finite system, then ρS need not be zero, even if the
system is not superconducting (GS95).

42



3.1 Transport quantities

The Meissner fraction estimates the ability of a system to exhibit the Meiss-
ner effect, which is related to the perfect diamagnetism of superconductors: If a
normal metal in a magnetic field is cooled below its superconducting transition
temperature, the magnetic flux is abruptly expelled. Thus the transition, when it
occurs in a magnetic field, is accompanied by the appearance of whatever surface
current is required to cancel the magnetic field in the interior of the specimen.
This is not implied by perfect conductivity (D > 0) alone, even though perfect
conductivity does imply a somewhat related property: If a perfect conductor, ini-
tially in zero magnetic field, is moved into a region of nonzero field, then Faraday’s
law of induction gives rise to eddy currents that cancel the magnetic field in the
interior. If, however, a magnetic field were established in a perfect conductor, its
expulsion would be equally resisted. Eddy currents would be induced to maintain
the field if the sample were moved into a field free-region. Thus, perfect conductiv-
ity implies a time-independent magnetic field in the interior, but is noncommittal
as to the value that field must have. In a superconductor, the field is not only
independent of time, but also zero (AM76).

For a mesoscopic system, where the system size N is finite, ρS will be finite and
gives the slope of the persistent current for small flux,

j = −ρSφ. (3.5)
Thus, mesoscopic systems show a Meissner effect. A persistent current flows only
depending on the value of the magnetic field in the system. This current can be
paramagnetic or diamagnetic, enhancing or diminishing the magnetic field in the
sample interior. However, the persistent current does not depend on the history
of the system.

In the view of this new insight—that the existence of the Meissner effect in a
material does not depend on superconductivity (at least for mesoscopic samples
of the material), but on the ability of a system to maintain a persistent current
depending only on the value of the magnetic field in it, which is described by the
Meissner fraction—we can try to give a new definition of the term phase-coherence
length. The phase-coherence length of electrons in a material was earlier said to be
measured by the circumference of the largest ring built from the material threaded
by a magnetic flux, for which the electrons in the ring show Aharonov-Bohm
oscillations, which could be visualized by measuring the magnetoresistance of the
ring, for example. In a theoretical model at arbitrary temperature, for arbitrary
scattering mechanisms, and arbitrary interaction mechanisms of the electrons,
the phase-coherence length Lφ of the electrons might be defined as the largest
circumference of a ring aN for which the absolute value of the Meissner fraction
stays above a threshold b,

Lφ = max
N

{

aN ;

∣

∣

∣

∣

∣

∂2F (N, φ)

∂φ2

∣

∣

∣

∣

φ=0

∣

∣

∣

∣

∣

> b

}

. (3.6)

Thus, estimations of the influence of strong electron correlation on the phase-
coherence length could be conducted without the construction chosen very recently
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3 Persistent currents and the Drude weight

in (Z̆B03). They calculated the reflectivity of a ring for one electron at half a
flux quantum in the ring, which should be zero for total phase-coherence of the
electrons in the ring. Moreover, the phase-coherence length Lφ of electrons could
be rigorously defined without resorting to the one-particle picture and without
the estimation of inelastic scattering times.

In the following sections, we resort to the Drude weight instead of the Meissner
fraction, because we mainly focus on quantum rings at zero temperature. At zero
temperature, the Drude weight and the Meissner fraction for a finite system are
equally capable of indicating the sign of the persistent current in a quantum ring,
but the use of the Drude weight is more widespread in the physics community.

3.1.2 The electrical conductivity

A system subjected to an external electric field responds by a redistribution of the
charges in the system. For a small field, the currents in the system are proportional
to the electric field. The conductivity of a system is defined as the proportionality
between the current and the total electric field in the system, which is the sum of
the external field and the electric field induced by the currents in the system. In
a time-invariant system which is homogeneous above a certain length scale (e.g.,
the lattice spacing) the total current density is

〈j〉 (r, t) =

∫

dr′
t
∫

−∞

dt′σ(r− r′, t− t′)E(r′, t′). (3.7)

This equation can be Fourier transformed to yield

〈j〉 (q, ω) = σ(q, ω)E(q, ω). (3.8)

Since photons have a much steeper (linear) energy dispersion than electrons within
the Brillouin zone, the transmitted momentum is essentially zero for not too high
energies. Thus, in the optical frequency regime and below we can take the long-
wavelength limit q→ 0 (Blü03):

〈j〉 (ω) = σ(ω)E(ω). (3.9)

Due to the neglect of disorder in this thesis, the only relevant processes that
influence the electrical conductivity are electron-phonon scattering and electron-
electron repulsion. The latter can influence the transport quantities fundamentally
if it becomes strong, transforming a conductor into a Mott-Hubbard insulator. In
the absence of electron-phonon scattering, the relevant Hamiltonian includes the
kinetic energy, the periodic potential and the electron-electron interaction. The
electron-electron scattering sparks current relaxation and dissipation. Therefore,
the current density is not conserved, i.e.,

[H, j] 6= 0. (3.10)
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3.1 Transport quantities

Leaving the continuous models of the last chapter behind, discrete tight-binding
models, including a hopping term (representing the effect of the periodic lattice
potential and the kinetic energy) as well as the electron-electron interaction,

H = −
∑

lmσ

tlm c†mσ clσ + Hint, (3.11)

are considered predominantly in this chapter. To gain insight into the electrical
conductivity σ(ω), we follow the approach of Kohn (Koh64). A fictitious magnetic
flux φ = aNA is introduced through a torus (of circumference aN) representing
the lattice (lattice constant a) with periodic boundary conditions. The flux tube
leads to a vector potential A considered equal on all lattice sites. The vector
potential can be included in the model by the Peierls substitution,

c†lσ → c†lσ exp
(

−i e
~

A · xl
)

, (3.12)

which stems from a gauge transform and effectively modifies the hopping matrix
elements tlm. The interaction term Hint remains unchanged by the gauge transform
due to its dependence on local particle densities only. Expanding the Hamiltonian
into a power series of the magnetic flux per lattice site (φ/N = aA), we obtain

H(aA) = −
∑

lmσ

tlme
i e~A·xlm c†mσ clσ + Hint

= H(0) + (−aA) · jp −
e2

2~2
a2A · τA

= H(0) + H′,

(3.13)

where the vector xlm = xj − xi. jp and τ are the paramagnetic current operator
and the stress tensor operator (which is directly related to the kinetic energy)
respectively:

jp = −i e
~
∑

lmσ

tlm
xlm
a

c†mσ clσ,

τ = −
∑

lmσ

tlm
xlm ⊗ xlm

a2
c†mσ clσ .

(3.14)

The electrical current, being the negative first derivative of the Hamiltonian with
respect to the total flux in the ring, is therefore a sum,

j = − ∂ H

aN∂A
=

1

N
jp +

e2

N~2
aτA. (3.15)

The measured value of the current 〈j〉 is the average of the velocity of the particles
times their charge. The paramagnetic current is proportional to the momentum
operator. The above analysis applies also to an oscillating vector potential A(t) =
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3 Persistent currents and the Drude weight

A(ω) exp(−iω+t) with ω+ = ω + iδ with δ → 0. This induces an electric field in
the system,

E(t) = iω+A(ω) exp(−iω+t), (3.16)
yielding

j =
1

N
jp −

iae2

Nω+~2
τE(t). (3.17)

Now, the Kubo formula for electrical conductivity can be derived evaluating 〈jp〉
as a linear response to H′. In the absence of spontaneous persistent currents in
the material under consideration, the time dependence of the expectation value of
the current operator can be expressed as a commutator if terms nonlinear in the
electric field are neglected:

〈ψ| jp |ψ〉 (t) = − i
~

t
∫

−∞

dt′ 〈ψ| [jp(t),H′(t′)] |ψ〉

=
a

ω+~

t
∫

−∞

dt′ 〈ψ| [jp(t), jp(t′) · E(t)] |ψ〉 eiω+(t−t′)

=
∑

β

a

ω+~
Eβ(t)

t
∫

−∞

dt′eiω
+(t−t′) 〈ψ|

[

jpα(t), jpβ(t′)
]

|ψ〉 ,

(3.18)

where α and β denote spatial indices. If we extract the complex conductivity σ̃
from the equation (3.9), the result is the Kubo formula,

σ̃αβ(ω) =
a

N





1

ω+~

t
∫

−∞

dt′eiω
+(t−t′) 〈[jpα(t), jpβ(t′)]

〉

− ie2

ω+~2
〈ταβ〉





=
a

N





1

ω+~

∞
∫

0

dteiω
+t
〈

[jpα(t), jpβ(0)]
〉

− ie2

ω+~2
〈ταβ〉





=
ia

Nω+

[

e2

~2
〈ταβ〉 − χαβ(ω)

]

,

(3.19)

where we defined

χαβ(ω) =
i

~

∞
∫

0

dteiω
+t
〈

[jpα(t), jpβ(0)]
〉

. (3.20)

The real part of the complex conductivity σ̃ can be compared with Eq. (3.1), to
obtain the Drude weight,

Dαα =
1

2
lim
ω→0

ω Im σ̃αα(ω)

=
a

2N

[

e2

~2
〈ταα〉 − χαα(0)

]

.
(3.21)
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3.1 Transport quantities

In a finite one-dimensional system, the Drude weight at temperature T = 0 can
be written in terms of the eigenstates |n〉 with corresponding energy En (CZP95),
setting ~ = e = kB = a = 1:

D =
〈−τ〉
2N

− 1

N

∑

n6=0

∣

∣

〈

n| jp |0
〉∣

∣

2

En − E0

. (3.22)

This definition of the Drude weight can be easily extended to finite temperature:

D =
1

N

[

1

2
〈−τ〉 −

∑

m6=n

pn

∣

∣

〈

n| jp |m
〉∣

∣

2

Em − En

]

, (3.23)

where pn denotes the Boltzmann weight e−En/T/Z and Z =
∑

n e
−En/T . On the

other hand (Koh64), we can evaluate, using second order perturbation theory for
the flux per lattice site (φ1 = φ/N) φ1 → 0, a shift of the level |n〉:

En(φ1) = 〈n|H(φ1 = 0) |n〉 − φ1 〈n| jp |n〉

− φ2
1

∑

m6=n

∣

∣

〈

n| jp |m
〉∣

∣

2

Em − En
− 1

2
φ2

1 〈n| τ |n〉 .
(3.24)

Extracting second order terms in φ1 (the curvature of levels) we see that

D =
1

2N

∑

n

pn
∂2En
∂φ2

1

∣

∣

∣

∣

φ1=0

=
N

2

∑

n

pn
∂2En
∂φ2

∣

∣

∣

∣

φ=0

.

(3.25)

Thus, the Drude weight is a sensitivity of the states to the applied flux.

3.1.3 The paramagnetic current

The paramagnetic current was derived in the last section by expanding the Ham-
iltonian with respect to a magnetic flux and taking the first order expansion coef-
ficient. However, there is another simple way to obtain the paramagnetic current
via the continuity equation,

∂

∂t
ρ(x, t) = −∇ · j(x, t). (3.26)

This method is needed to calculate the paramagnetic current in the periodic An-
derson model, as will be explained in the next sections.

From the polarization,
P =

∫

dx xρ(x), (3.27)
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3 Persistent currents and the Drude weight

which simplifies to
P =

∑

l

xlnl (3.28)

in lattice models, the current can be calculated via the continuity equation (Mah90):

∂

∂t
P =

∫

dx x
∂

∂t
ρ(x, t)

= −
∫

dx x∇ · jp(x, t)

=

∫

dx jp(x) · ∇(x)

=

∫

dx jp(x)

= jp.

(3.29)

With the use of the Heisenberg equation of motion, we obtain

jp =
∂P

∂t
= i[H,P]. (3.30)

We can now calculate the paramagnetic current for a model with nearest-neighbor
hopping. If the vectors to the nearest-neighbor lattice sites are called δ, the
hopping term of the electrons is

Hhop = −t
∑

lδσ

d†l+δ,σ dlσ . (3.31)

Here, we called the creators and annihilators of the electrons d†lσ and dlσ respect-
ively, to make a connection with the periodic Anderson model, with which the
conduction electrons in d-orbitals are described. The current is therefore

jhop = i[Hhop,P]

= −it
∑

lδσm

[d†l+δ,σ dlσ,xm ndm]

= −it
∑

lδσm

xm d†l+δ,σ δlm dmσ−xm d†mσ δm,l+δ dlσ

= −it
∑

lδσ

(xl − xl+δ) d†l+δ,σ dlσ

= it
∑

lδσ

δ d†l+δ,σ dlσ .

(3.32)

This result is consistent with Eq. (3.14), if ~, the lattice constant a and the electron
charge e are set to one.
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3.2 Example: The periodic Anderson model

3.2 Example: The periodic Anderson model

The periodic Anderson model is now used as an example system for the calculation
of the Drude weight. The periodic Anderson model was initially formulated to ex-
plain the properties of the rare-earth and the actinide metallic compounds includ-
ing the heavy fermion compounds. The superconducting and magnetic properties
of heavy-fermion materials have attracted much attention because of their non-
conventional character. These materials have very large specific heat coefficients,
indicating very large effective quasi-particle masses, hence the designation heavy
fermions. Some of these materials order antiferromagnetically at low temperatures
(examples are UAgCu4, UCu7, U2Zn17) while others (such as UBe13, CeCu2Si2,
UPt3) order in a superconducting state and others show no ordering (such as
CeAl3, UAuPt4, CeCu6, UAl2). Some compounds exhibit phases where antifer-
romagnetic order coexists with unconventional superconductivity. Examples are:
UPd2Al3, CePd2Si2 and CeIn3. In the prototype heavy-fermion system CexCu2Si2
the coexistence of d-wave superconductivity and magnetic order was clearly iden-
tified in a narrow range of x values around ≈ 0.99.

Systems that exhibit both superconductivity and antiferromagnetism at low
temperatures have ratios between the Néel temperature TN and the superconduct-
ing critical temperature Tc of the order of TN/Tc ≈ 1 − 100. The coexistence of
both types of order can be tuned by external parameters such as external pressure
or changes in the stoichiometry.

A description of the normal state properties of the heavy-fermion systems has
been attempted assuming a generalization of the impurity Anderson model on
a lattice. In the periodic Anderson model the energy of a single electron in an
f -orbital (e.g., 4f 1) is εf and the energy of two electrons in the same f -orbital
(4f 2) is 2εf + U f , where U f is the on-site Coulomb repulsion. The energy of the
4f 2 state is much larger than the energy of the 4f 1 state. Thus, if the charge
fluctuations at the f -orbital are small, the (4f 1) electron may behave as a local
moment.

The complexity of heavy-fermion systems arises from the interplay between
Kondo screening of local moments, the antiferromagnetic (RKKY) interaction
between the moments and the superconducting correlations between the heavy
quasi-particles. The local moments form in partially filled f -shells of Ce and
U ions. The absence of magnetic order in some cases could perhaps be due to
complete Kondo screening or to a spin liquid arrangement of the local moments.
In the normal nonmagnetic state the periodic Anderson model predicts Fermi
liquid like behavior and explains the main features at low temperatures, such as
the large effective masses and the Kondo resonance near the Fermi level. But the
main technical difficulty is the competition between Kondo compensation of the
localized spins and the magnetic interaction between them. This interaction is
mediated by the conduction electrons (RKKY-type). Related to this competition
is the effectiveness of the compensating cloud around each f -site (PA02).
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3 Persistent currents and the Drude weight

3.2.1 Hamiltonian and band structure

The basic ingredients of the periodic Anderson model are a narrow and correlated
f -band hybridized with a dispersive d-band. The d- and f -orbitals of an atom are
orthogonal. Therefore, the local hybridization of the d- and f - orbitals at the same
lattice site should be small compared to the contributions to the hybridization from
nearest-neighbor lattice sites [see, e.g., (vDMHZ01)]. Sketches of the periodic
Anderson model with local and nearest-neighbor hybridization are shown in Fig.
3.1 and Fig. 3.2. It is clear, that the form of the current operator depends on

 

V 

ε f 

U 

t 

d-band 

f-band 

Figure 3.1: The one-dimensional periodic Anderson model with local hybridization
contains a dispersive d-band (where the electrons can hop from site
to site with a hopping amplitude t) and a correlated f -band (U is
the strength of the Coulomb repulsion). The f -band is taken to be
dispersionless (εf = 0). The local hybridization enables the electrons
to move from a d-orbital to an f -orbital with amplitude V at the same
lattice site.

 

V 

d-band 

f-band 

Figure 3.2: The one-dimensional periodic Anderson model with nearest-neighbor
hybridization enables the electrons to move from the d-orbitals of one
site to the f -orbitals of a nearest-neighbor site and back again.

the exact form of the hybridization. The hybridization of heavy-fermion materials
will in general be a mixture of on-site and nearest-neighbor hybridizations and
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3.2 Example: The periodic Anderson model

possibly contributions from further-neighbor sites. Thus, in order to determine
the dependence of results on the hybridization, we perform most calculations for
the on-site and nearest-neighbor version of the hybridizations.

The model is described by the following Hamiltonian:

HPAM =− t
∑

〈lm〉,σ

(

d†lσ dmσ + d†mσ dlσ
)

−
∑

l,m,σ

Vlm
(

d†lσ fmσ + f†mσ dlσ
)

+ εf
∑

l,σ

nflσ +U f
∑

l

nfl↑ nfl↓ .
(3.33)

The operators d†lσ and f†lσ create electrons with spin σ in d- and f -orbitals respect-
ively at the lattice site l of a hypercubic lattice. Although the lattice structure of
real heavy-fermion materials is more complicated, we chose a hypercubic lattice
in order to be able to compare our results with literature data. The hopping
amplitude t describes the hopping of the d-electrons to a nearest-neighbor site.
The sum

∑

〈lm〉 is taken over nearest-neighbor pairs. Via the hopping amplitude
Vlm, the hybridization of the d- and f -orbitals is taken into account. Letting
Vlm = V δlm, yields local hybridization. Nearest-neighbor hybridization is ob-
tained by Vll′ = V δ|l−l′|,1. The interaction between the d-electrons is weaker than
the interaction between the f -electrons. Therefore, to a good approximation, only
the interaction term containing U f is present. The operator nflσ = f†lσ f lσ is the
number operator of the electrons of spin σ at lattice site l. The potential of
the f -electrons is εf . From Eq. (3.33) we define the noninteracting part of the
Hamiltonian H0

PAM the resulting Hamiltonian when U f = 0.
With the use of the following equations, the Hamiltonian H0

PAM will be trans-
formed to momentum space for different hybridizations:

clσ = N−
d
2

∑

k∈B

eikxl ckσ

ckσ = N−
d
2

∑

l

e−ikxl clσ

Ndδll′ =
∑

k

eik(xl−xl′ )

Ndδkk′ =
∑

l

e−i(k−k′)xl .

(3.34)

These relations are valid for c=d and c=f as well. The first part of the Hamiltonian
is transformed to momentum space by the following calculation. The sum

∑

(lm)
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is taken over all nearest-neighbor pairs in both orientations:

−t
∑

(ll′),σ

d†lσ dl′σ = −t
∑

(ll′),σ

(

N−
d
2

∑

k∈B

eikxl dkσ

)†(

N−
d
2

∑

k′∈B

eik
′xl′ dk′σ

)

= − t

Nd

∑

k,k′,σ

∑

(ll′)

e−i(kxl−k′xl′ ) d†kσ dk′σ

= − t

Nd

∑

k,k′,σ

∑

(ll′)

e−i(k−k′)xleik
′(xl′−xl) d†kσ dk′σ

= − t

Nd

∑

k,k′,σ

(

∑

l

e−i(k−k′)xl

)

d
∑

`=1

(

eik
′
`a + e−ik

′
`a
)

d†kσ dk′σ

=
∑

k,σ

εk d†kσ dkσ, where εk = −2t
d
∑

`=1

cos k`a.

(3.35)

The spatial components of vectors are counted with the index ` ∈ {x, y, z}. This
applies to a d-dimensional hypercubic lattice.

With the quasi-particles (TSU97), it is possible to diagonalize the noninteracting
part of the Hamiltonian of the periodic Anderson model in momentum space:

akσ = uk dkσ +vk fkσ

a†kσ = u∗k d†kσ +v∗k f†kσ

bkσ = −vk dkσ +uk fkσ

b†kσ = −v∗k d†kσ +u∗k f†kσ .

(3.36)

The quasi-particle operators fulfill the canonical anticommutator relations,

{akσ, ak′σ′} = 0 {bkσ, bk′σ′} = 0 {akσ, bk′σ′} = 0

{a†kσ, a†k′σ′} = 0 {b†kσ, b†k′σ′} = 0 {a†kσ, b†k′σ′} = 0 (3.37)
{akσ, a

†
k′σ′} = δkk′δσσ′ {bkσ, b

†
k′σ′} = δkk′δσσ′ {akσ, b

†
k′σ′} = 0,

under the condition that |uk|2 + |vk|2 = 1 is fulfilled (this follows from, e.g.,
{akσ, a

†
k′σ′} = δkk′δσσ′). The parameters uk and vk can be chosen to be real. The

d- and f -electrons can be expressed through the quasi-particles,

fkσ = vk akσ +uk bkσ

f†kσ = vk a†kσ +uk b†kσ

dkσ = uk akσ−vk bkσ

d†kσ = uk a†kσ−vk b†kσ .

(3.38)
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Local hybridization

The second part of the Hamiltonian is transformed to momentum space for the
local hybridization Vll′ = V δll′ :

HLH = −
∑

l,l′,σ

V δll′
(

d†lσ f l′σ + f†l′σ dlσ
)

= −V
∑

l,σ

(

d†lσ f lσ + f†lσ dlσ
)

= − V

Nd

∑

k,k′,σ

∑

l

e−i(k
′−k)xl

(

d†kσ fk′σ + f†k′σ dkσ

)

= −V
∑

k,σ

(

d†kσ fkσ + f†kσ dkσ

)

.

(3.39)

The quasi-particle operators are inserted into the Hamiltonian H0
PAM in momentum

space with local hybridization,

H0
PAM =

∑

k,σ

[

εk d†kσ dkσ−V
(

d†kσ fkσ + f†kσ dkσ

)

+ εf f†kσ fkσ

]

=
∑

k,σ

[(

εku
2
k + εfv2

k − 2V ukvk

)

a†kσ akσ

+
(

εkv
2
k + εfu2

k + 2V ukvk

)

b†kσ bkσ

+
(

V (v2
k − u2

k) + (εf − εk)ukvk

)

a†kσ bkσ

+
(

V (v2
k − u2

k) + (εf − εk)ukvk

)

b†kσ akσ

]

.

(3.40)

In order to obtain a diagonal Hamiltonian, the non-diagonal terms should vanish:

V (v2
k − u2

k) + (εf − εk)ukvk = 0. (3.41)

In connection with the condition,

|uk|2 + |vk|2 = 1, (3.42)

solutions for uk and vk can be determined:

uk =

√

1

2
− εk − εf

2
√

(εk − εf )2 + 4V 2

vk =

√

1

2
+

εk − εf

2
√

(εk − εf )2 + 4V 2
.

(3.43)

Inserting the solution into the Hamiltonian leads to two energy bands,

E±k =
1

2

(

εk + εf ±
√

(εk − εf )2 + 4V 2
)

, (3.44)
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3 Persistent currents and the Drude weight

and a diagonal Hamiltonian:

H0
PAM =

∑

k,σ

E+
k b†kσ bkσ +E−k a†kσ akσ . (3.45)

At vanishing hybridization, V = 0, the tight-binding band of the d-electrons
and the narrow band of the f -electrons are recovered (see Fig. 3.3).
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Figure 3.3: Band structure of the one-dimensional periodic Anderson model with
vanishing hybridization and εf = −3t.

If εf lies in the d-band and the hybridization is switched on, there are two
hybridized bands which are separated by a gap. The width of the gap is

∆ = E+
(0,0,... ) − E

−
(π,π,... )

= −2dt+
1

2

[
√

(2dt+ εf )2 + 4V 2 +
√

(2dt− εf )2 + 4V 2
]

,
(3.46)

where d is the dimension of the hypercubic lattice. The bands for the one-
dimensional periodic Anderson model with εf intersecting the d-band are shown
in Fig. 3.4. The width of the gap between the two bands is shown for various
parameters in Fig. 3.5.

The width of the bands is (BBG00)

W± = E±(0,0,... ) − E
±
(π,π,... )

= 2dt± 1

2

[
√

(2dt− εf )2 + 4V 2 −
√

(2dt+ εf )2 + 4V 2
]

.
(3.47)

The more negative εf becomes, the narrower will the lower band be. (W− → 0).
The bandwidth of the upper band goes to the bandwidth of the free electron gas
(W+ → 4dt) in that case.
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Figure 3.4: The bands of the one-dimensional periodic Anderson model at V = t,
εf = −t.
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Figure 3.5: Gap of the one-dimensional periodic Anderson model with local hy-
bridization at different values of εf and V in units of the hopping
amplitude t.
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Figure 3.6: Band structure of the two-dimensional periodic Anderson model with
local hybridization, εf = −2, and V = 0.5, in comparison with the
tight-binding band (V = 0, εf = 0) in units of the hopping amplitude
t (BG98).
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Figure 3.7: Brillouin zone of a square lattice (BG98).
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3.2 Example: The periodic Anderson model

Nearest-neighbor hybridization

With the nearest-neighbor hybridization Vlm = V δ|l−m|,1 (vDMHZ01; HMS99;
HB00; HHSM00), the hybridization part of the Hamiltonian is derived in analogy
to Eq. (3.35):

HNNH = −
∑

l,l′,σ

V δ|l−l′|,1
(

d†lσ f l′σ + f†l′σ dlσ
)

= −V
∑

(ll′),σ

(

d†lσ f l′σ + f†l′σ dlσ
)

=
V

t

∑

k,σ

εk
(

d†kσ fkσ + f†kσ dkσ

)

.

(3.48)

The noninteracting Hamiltonian is thus

H0
PAM =

∑

k,σ

[

εk d†kσ dkσ +
V

t
εk
(

d†kσ fkσ + f†kσ dkσ

)

+ εf f†kσ fkσ

]

. (3.49)

The energy bands are

E±k =
1

2



εk + εf ±

√

(εk − εf )2 + 4

(

V

t
εk

)2


 , (3.50)

where we note that, in the formulas for the local hybridization, V can simply be
replaced by −V

t
εk. The band structure for the two-dimensional periodic Anderson

model is shown in Fig. 3.8. The maxima and minima of the bands are not at
the Γ- and M -point any more. For example, the minimum in E+ is at E+

(π
2
,π
2
,... ) if

εf > 0 and the minimum of E− is found at E−(π
2
,π
2
,... ) if εf < 0. Therefore, it is more

difficult to calculate the gap between the bands analytically. A graph of the gap
width is shown in Fig. 3.9. The periodic Anderson model with local hybridization
has a nonvanishing energy gap where the band of the f -electrons intersects the
band of the d-electrons (VCS+95). Thus, a band insulator is obtained. This is also
true for the symmetric periodic Anderson model (εf = 0). For nearest-neighbor
hybridization, there is no gap for the symmetric model.

For further insight we appended a section about particle-hole transformations
in the periodic Anderson model (see Sec. C.2).

3.2.2 The paramagnetic current

We calculate the paramagnetic current in the periodic Anderson model with the
use of equation (3.30). This equation relates the paramagnetic current to the
commutator of the Hamiltonian and the polarization. The part of the Hamiltonian
that describes the interaction of the f -electrons commutes with the polarization.
Therefore, we only need to consider the hopping and the hybridization terms. The
paramagnetic current due to nearest-neighbor hopping was calculated before [see
Eq. (3.32)].
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Figure 3.8: The band structure of the two-dimensional periodic Anderson model
with nearest-neighbor hybridization, εf = −2, and V = 0.5 in com-
parison with the tight-binding band (V = 0, εf = 0) in units of the
hopping amplitude t.

Local hybridization

The Hamiltonian of the local hybridization HLH [see Eq. (3.39)] commutes with
the polarization. The terms that contribute to the commutator,

[d†lσ f lσ,xl d
†
lσ dlσ] = −xl d

†
lσ f lσ,

[d†lσ f lσ,xl f
†
lσ f lσ] = xl d

†
lσ f lσ,

[f†lσ dlσ,xl d
†
lσ dlσ] = xl f

†
lσ dlσ, and

[f†lσ dlσ,xl f
†
lσ f lσ] = −xl f

†
lσ dlσ,

(3.51)

cancel each other. Since these terms do not contribute to the current, the para-
magnetic current in the periodic Anderson model with local hybridization is

jLH = jhop, (3.52)

which is simply the current of the hopping d-electrons.
To evaluate the impact of the paramagnetic current on the Drude weight, we

transform the current operator to momentum space and to the quasi-particle space
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Figure 3.9: The width of the gap of the one-dimensional periodic Anderson model
with nearest-neighbor hybridization is shown with respect to εf and
V . All quantities are plotted in units of the hopping amplitude t.

afterwards. The paramagnetic current in momentum space is:

it
∑

lδσ

δ d†l+δ,σ dlσ = it
∑

lδ

δ
∑

σ





(

N−
d
2

∑

k

eikxl+δ dkσ

)†(

N−
d
2

∑

k′

eik
′xl dk′σ

)





=
it

Nd

∑

kk′σ

∑

lδ

δe−i[kxl+δ−k′xl] d†kσ dk′σ

=
it

Nd

∑

kk′σ

(

∑

l

ei[k−k′]xl

)(

∑

δ

δeikxδ

)

d†kσ dk′σ

=
it

Nd

∑

kk′σ

Ndδkk′

d
∑

`=1

(

eik`a − e−ik`a
)

=
∑

kσ

ηk d†kσ dkσ,

(3.53)

where

ηk = −2t
d
∑

`=1

sin k`a. (3.54)
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3 Persistent currents and the Drude weight

The Bogoliubov transformation leads to

j =
∑

kσ

ηk

(

uk a†kσ−vk b†kσ
)

(uk akσ−vk bkσ)

=
∑

kσ

ηk

[

u2 a†kσ akσ +v2 b†kσ bkσ−ukvk

(

a†kσ bkσ + b†kσ bkσ

)]

=
∑

kσ

ηk

[(

1

2
− εk

2
√

ε2k + 4V 2

)

a†kσ akσ +

(

1

2
+

εk

2
√

ε2k + 4V 2

)

b†kσ bkσ

− V
√

ε2k + 4V 2

(

a†kσ bkσ + b†kσ akσ

)

]

.

(3.55)

This paramagnetic current operator is not diagonal. It can therefore lead to
contributions to the Drude weight. In contrast, the paramagnetic current operator
of the periodic Anderson model with nearest-neighbor hybridization is diagonal
in the Bogoliubov space. Due to this fact, it does not contribute to the Drude
weight.

Nearest-neighbor hybridization

With the nearest-neighbor hybridization, there are additional terms contributing
to the paramagnetic current. The Hamiltonian for the nearest-neighbor hybridiz-
ation is

HNNH = −V
∑

(lm)σ

(d†lσ fmσ + f†mσ dlσ)

= −V
∑

lδσ

(

d†l+δ,σ f lσ + f†l+δ,σ dlσ
)

.
(3.56)

The nearest-neighbor hybridization allows the electrons to get from one lattice
site to a nearest-neighbor lattice site (see Fig. 3.10) There are the following terms

δl+

d

f

l

Figure 3.10: There are four possibilities how electrons can go from lattice site l to
lattice site l+δ and back again through hybridization of the d-orbitals
with the f -orbitals.
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3.2 Example: The periodic Anderson model

in the commutator with the polarization:

[f†l+δ,σ dlσ,xm ndm] = δmlxm f†l+δ,σ dmσ (3.57a)
[f†l+δ,σ dlσ,xm nfm] = −δm,l+δxm f†mσ dlσ (3.57b)
[d†l+δ,σ f lσ,xm ndm] = −δm,l+δxm d†mσ f lσ (3.57c)
[d†l+δ,σ f lσ,xm nfm] = δmlxm d†l+δ,σ fmσ . (3.57d)

The paramagnetic current in the periodic Anderson model with nearest-neighbor
hybridization is:

jNNH = jhop + [HNNH,P]

= jhop + iV
∑

lδσ

δ(d†l+δ,σ f lσ + f†l+δ,σ dlσ). (3.58)

In momentum space, we obtain

j =
∑

kσ

ηk

[

d†kσ dkσ +
V

t
(d†kσ fkσ + f†kσ dkσ)

]

. (3.59)

Transforming the current operator to the space of the quasi-particles, the current
becomes

j =
∑

kσ

ηk

{(

uk a†kσ−vk b†kσ
)

(uk akσ−vk bkσ)

+
V

t

[(

uk a†kσ−vk b†kσ
)

(vk akσ +uk bkσ)

+
(

vk a†kσ +uk b†kσ
)

(uk akσ−vk bkσ)
]}

=
∑

kσ

{(

u2
k + 2

V

t
vkuk

)

a†kσ akσ +

(

v2
k − 2

V

t
vkuk

)

b†kσ bkσ

+

[

V

t

(

u2
k − v2

k

)

− ukvk

]

(

a†kσ bkσ + b†kσ akσ

)

}

=
∑

kσ

ηk

[(

1

2
− 1

2
sgn(εk)

√

1 +
4V 2

t2

)

a†kσ akσ

+

(

1

2
+

1

2
sgn(εk)

√

1 +
4V 2

t2

)

b†kσ bkσ

]

.

(3.60)

This operator is diagonal. Therefore it does not contribute to the Drude weight
and the Drude weight can be calculated in terms of the kinetic energy operator
alone (T=0):

DNNH =
〈ψ0| − τ |ψ0〉

2N
. (3.61)
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3 Persistent currents and the Drude weight

The nearest-neighbor hybridization also changes the operators of the total current
and the kinetic energy, because the hybridization needs to be multiplied by a
Peierls phase factor:

H =
∑

lδσ

[

−t d†l+δ,σ dlσ−V
(

d†l+δ,σ f lσ + f†l+δ,σ dlσ
)]

eiδ
φ
N + Hint . (3.62)

An overview of all operators relevant for calculating the Drude weight of the
noninteracting periodic Anderson model is found in appendix C.1.

3.2.3 Drude weight

The asymmetric band structure of the periodic Anderson model can lead to a
negative Drude weight. The band structure of the one-dimensional periodic An-
derson model with local hybridization is shown in Fig. 3.11. At the point k1,
the gap between the two bands is minimal. For vanishing hybridizations, the gap
goes to zero. Around k1, the curvature in the lower band is strongly negative for
small hybridizations. This negative curvature leads to the negative Drude weight
that we observed for systems where the lower band is filled at least to k1 and the
upper band is empty. Regarded separately, the two bands are not particle-hole
symmetric, even for the so-called ‘symmetric’ periodic Anderson model (εf = 0).

The thermodynamic limit

The Drude weight of the one-dimensional periodic Anderson model with local
hybridization below half filling is calculated in the thermodynamic limit in this
section. At first, we calculate the Drude weight with the use of Eq. (3.22). Af-
terwards, the Drude weight is calculated by determining the curvature of the
ground-state energy.

The expectation value of the kinetic energy operator is (see appendix C.1 for
the kinetic energy in terms of the quasi-particles):

〈ψ0| − τ |ψ0〉
2N

= − 1

N

∑

|k|<kF

εkΞ
−
k

=
1

N

∑

|k|<kF

N

2π
(2t cos k)

[

1

2
+

t cos k
√

(2t cos k)2 + 4V 2

]

2π

N

N→∞
=

1

2π

kF
∫

−kF

t cos k

[

1 +
t cos k

√

(t cos k)2 + V 2

]

dk

=
t

π
sin kF +

1

π

√

1

h

[

hE

(

kF |
t2

h

)

− V 2F

(

kF |
t2

h

)]

,

(3.63)
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Figure 3.11: The two bands of the noninteracting periodic Anderson model are
shown for t = 1, V = 0.3, εf = −0.5 and U f = 0. At the point k1 the
f -level intersects the tight-binding band.

where kF is the Fermi momentum up to which the lower band is filled,

kF = 2πn. (3.64)

The filling n is 0.5 for the completely filled lower band. Thus, the equation (3.63)
is valid for 0 ≤ n ≤ 1

2
. F and E are the incomplete elliptic integrals of the first

and second kind respectively. The parameters g and h are

g = t2 + 2V 2 + t2 cos(2kF ),

h = t2 + V 2.
(3.65)

The expectation value of the paramagnetic current operator that also contributes
to the Drude weight,

− 1

N

∑

n6=0

∣

∣

〈

ψn| jp |ψ0

〉∣

∣

2

En − E0

=

− 1

N

∑

n6=0

∣

∣

〈

ψn
∣

∣

∑

kσ ηkΥk(b
†
kσ akσ + a†kσ bkσ)

∣

∣ψ0

〉∣

∣

2

En − E0

, (3.66)
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3 Persistent currents and the Drude weight

can be evaluated. If only the lower band of quasi-particles is filled, the part of the
current operator that annihilates electrons in the upper band is a†kσ bkσ |ψ0〉 = 0.
The other part of the current operator excites quasi-particles from the lower band
to the upper band. Spin and momentum of these quasi-particles are conserved.
Thus, the expectation value of the current operator is

− 1

N

∑

n6=0

∣

∣

〈

ψn| jp |ψ0

〉∣

∣

2

En − E0

= − 1

N

∑

|k|<kF ,σ∈{↑,↓}

|ηkΥk|2
∣

∣〈ψ0| a†kσ bkσ b†kσ akσ |ψ0〉
∣

∣

2

E+
k − E

−
k

= − 2

N

∑

|k|<kF

|ηkΥk|2

E+
k − E

−
k

N→∞
= − 1

2π

kF
∫

−kF

(tV sin k)2

(V 2 + t2 cos2 k)
3
2

dk

=

√
2t2 sin 2kF

2π
√
g

− 1

π

√

1

h

[

hE

(

kF |
t2

h

)

− V 2F

(

kF |
t2

h

)]

.

(3.67)

The integrand in Eq. (3.67) is

f(k) = − (tV sin k)2

(V 2 + t2 cos2 k)
3
2

. (3.68)

This function reaches its maximum at k = ±π
2
,

f
(

±π
2

)

= − t2

|V |
. (3.69)

In finite systems with N = 4n lattice sites, the k-points ±π
2
belong to the Brillouin

zone. This leads to the divergence of the Drude weight to −∞ for vanishing
hybridization V . In the next section we look at the model on four lattice sites in
more detail. In the thermodynamic limit, the Drude weight stays finite, because
the area below the function f(k) and not the value of the function f(k) contributes
to the Drude weight. If we add both terms contributing to the Drude weight, we
obtain

D =
t

π

[

1 +
t cos kF√

t2 cos2 kF + V 2

]

sin kF . (3.70)

On the other hand, the Drude weight in the thermodynamic limit can be calcu-
lated from half the ground state energy per site. For less than half filling, where
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3.2 Example: The periodic Anderson model

only the lower band is populated (half filling means two electrons per site), it is

D =
∂2

∂φ2

E0(φ)

2L

=
1

2π

∂2

∂φ2

kF
∫

−kF

E−k (φ)dk

=
t

π

[

1 +
εf + 2t cos kF

√

(εf + 2t cos kF )2 + 4V 2

]

sin kF .

(3.71)

For the symmetric case, the Drude weight is shown in Fig. 3.12. It is consistent
with the result in Eq. (3.70). The lower band of the symmetric periodic Anderson
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Figure 3.12: Drude weight for the symmetric periodic Anderson model with t = 1,
εf = 0, U f = 0 and different values for the hybridization V .

model is flat in the region |k| > π
2
for small hybridizations. At quarter filling,

the states in the flat area are populated, leading to a higher effective mass and
a smaller conductivity of the charge carriers. For vanishing hybridization, the
Drude weight between quarter and half filling is zero.

Finite systems

The simplest configuration to find negative Drude weight in the periodic Anderson
model is the noninteracting model with 4 sites and 2 electrons of the same spin.
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3 Persistent currents and the Drude weight

However, to proof that the negative Drude weight is not an open-shell effect, like
in the Hubbard model (this will be explained in Sec. 3.3.2), we take 3 electrons of
the same spin. The ground state is a combination of the one-particle states with
momentum −π

2
, 0 and +π

2
. The dependence of the energy of the ground state on

the magnetic flux is plotted in Fig. 3.13. As the hybridization becomes lower,
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Figure 3.13: The ground-state energy for the noninteracting 4-site symmetric peri-
odic Anderson model with 3 spin-up electrons for different hybridiz-
ations.

the spikes in the ground-state energy become sharper, leading to a higher absolute
value of the Drude weight. The Drude weight is negative, because the curvature
at φ = 0 is negative. The Drude weight for this system is

D =
t

8

[

1− 2t

|V |
+

t√
t2 + V 2

]

. (3.72)

The Drude weight diverges to minus infinity for vanishing hybridizations. The
convergence to the thermodynamic limit is shown in Fig. 3.14.

3.3 Systems with negative Drude weight

For finite systems described by the Hubbard model, the periodic Anderson model
or the Kronig-Penney model, a negative Drude weight is found in certain para-
meter ranges. We explain the reasons for this behavior in this section and give
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Figure 3.14: This figure shows the convergence of the Drude weight of the one-
dimensional periodic Anderson model (t = 1, V = 0.1, εf = 0, U f =
0) to its value in the thermodynamic limit. The value of the Drude
weight in the thermodynamic limit is D = 0.00221758. Each line
is plotted at alternating open- and closed-shell configurations. The
crossed dots are for systems that include the point π/2, where the
band has a large negative second derivative in the Brillouin zone.
Therefore the Drude weight is negative. The circled dots do not
include this point in the Brillouin zone. The systems with open-
shell configuration (e.g., L = 600) converge slightly worse to the
thermodynamic limit than the closed-shell systems. The systems of
size L = 4n + 2 converge much slower to the thermodynamic limit.
Therefore these data are not shown in the inset.

criteria for the occurrence of a negative Drude weight in general. Whether or not
it is possible to find a negative Drude weight depends on particle-hole symmetry
and degeneracy of the ground state of the model under consideration. Negative
Drude weight is a finite-size effect and corresponds to a paramagnetic response
of the ring. The persistent current in the ring generates a magnetic field that
enhances the magnetic field in the ring. However, the Drude weight is positive
semidefinite in the thermodynamic limit, as has been exemplified for the periodic
Anderson model in Fig. 3.14.

The occurrence of a negative Drude weight has been found first for a finite half-
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3 Persistent currents and the Drude weight

filled Hubbard ring (SMS91; FMS+91; KEH99) if the number of sites is a multiple
of four. The Hubbard model is an effective model for strongly interacting fermions.
In contrast to the periodic Anderson model, it contains only one band of dispersive
electrons. These electrons interact through an effective on-site Coulomb repulsion
like the f -electrons in the periodic Anderson model. In a half-filled Hubbard ring
on 4n lattice sites, the electrons are in an open-shell configuration. It will be
shown in the next section, that open-shell configurations can potentially lead to
a negative Drude weight.

A second characteristic of an electron system, which can lead to a negative
Drude weight is an asymmetric band structure. In the next section, we start
examining the asymmetric band structure of the lower band of the periodic An-
derson model. Also in other finite systems, a negative Drude weight due to band
asymmetry is present.

3.3.1 Asymmetric band structure

In the periodic Anderson model, the Drude weight is negative, because the cur-
vature at φ = 0 is negative, as has been shown in Fig. 3.13. The lowering of
the ground-state energy can be understood from Fig. 3.15. If a magnetic flux 

E 

φ k 

π/2 π −π −π/2 
Figure 3.15: In the ground state of the 4-site symmetric periodic Anderson model

on a ring with 3 spin-up electrons, the three lowest lying states are
occupied. Only the lower band is plotted in the limit V → 0+ (see
Fig. 3.11).

through the ring is switched on, the points in the Brillouin zone are shifted by an
amount of φ. Due to the asymmetric structure of the lower band in the periodic
Anderson model, the energy of the ground state can be lowered by the flux.
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3.3 Systems with negative Drude weight

The symmetric case is not the only configuration where negative Drude weight
appears in the periodic Anderson model even without interaction. Whenever the
point k1 where the f -level intersects the tight-binding band (see Fig. 3.11),

εf = −2t cos k1, (3.73)
is an element of the Brillouin zone, and the resulting hybridized band is filled at
least up to that point, the Drude weight is negative for small hybridizations and
diverges to minus infinity in the limit of vanishing hybridization. For example
for εf = −1, k1 = π/3 is the point where the f -level intersects the tight-binding
band. For rings with N = 6n sites and at least 2 electrons of each spin direction,
the Drude weight is negative.

The periodic Anderson model is not the only model where negative Drude weight
is possible. Another example for an asymmetric band structure that leads to a
negative Drude weight is the Kronig-Penney ring, mentioned in chapter 2.1. The
point with the maximal negative curvature of the first band is k1 = π (see Fig.
3.16). So the band has to be completely filled for a negative Drude weight to
appear. Of course, in the thermodynamic limit the Drude weight goes to zero.

0
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-1 -0.5 0 0.5 1

Figure 3.16: The first three bands of the Kronig-Penney model. The first band is
extracted and shown in the inset. The absolute value of the curvature
at the point k1 = π is much higher than the curvature at the point
k = 0.

In conclusion, negative Drude weight in finite one-dimensional electronic rings
due to particle-hole asymmetry exists, if there is a point k1 in the Brillouin zone

69



3 Persistent currents and the Drude weight

B, where the curvature of the band is negative E ′′(k1) < 0, and the absolute value
of the curvature at this point is higher than the curvature at any other point in
the Brillouin zone. This point in the Brillouin zone has to be filled with electrons.

3.3.2 Open shells

Besides of an asymmetric band structure, the electron-electron interaction can
lead to a negative Drude weight. If there are several crossing levels for the ground
state of the noninteracting model, the electron-electron interaction can lead to
a level repulsion, which may end up in a negative curvature of the ground state
with respect to the magnetic flux. We explain this in the following section for the
special case of the Hubbard model.

The reason for the existence of a negative Drude weight in the Hubbard model,

H =− t
∑

l,σ

(

e−
ieφ
N c†l,σ cl+1,σ +e

ieφ
N c†l+1,σ cl,σ

)

+ U
∑

l

nl↑nl↓,
(3.74)

with periodic boundary conditions, which was found by Staffordet al. (SMS91;
FMS+91; KEH99) lies in the open-shell configuration of such systems (n↑ = n↓,
n↑ even). The ground state for the noninteracting system is fourfold degenerate.
The degenerate states are |↑, ↓〉, |↓, ↑〉, |↑↓, 0〉 and |0, ↑↓〉. Only the spins of the
electrons at the Fermi points are given in this notation. All states below kF are
filled and all states above kF are empty.

Finite Hubbard rings at half filling with Sz = 0 must have an even number
of lattice sites. If the number of lattice sites is a multiple of four, N = 4n,
the electrons are in an open-shell configuration. If the number of lattice sites is
N = 4n + 2, the ground state is nondegenerate for the noninteracting system.
In the second case, the Drude weight is positive semidefinite. For an open-shell
configuration, the interaction matrix in first-order perturbation theory is











n↑n↓
N
U 1

N
U 0 0

1
N
U

n↑n↓
N
U 0 0

0 0
n↑n↓
N
U

[

1
N
U
]

0 0
[

1
N
U
] n↑n↓

N
U











, (3.75)

where the bracketed terms occur only at half filling when the number of lattice
sites is a multiple of four (kF = π

2a
). This is due to an Umklapp process, that causes

the |↑↓, 0〉 state with total momentum −π/a to mix with the |0, ↑↓〉 state with
total momentum +π/a. The antisymmetric combination of |↑↓, 0〉 and |0, ↑↓〉 is
responsible for the finding of a negative Drude weight (see Fig. 3.17). In systems
with open-shell configurations, but kF 6= π

2a
, the antisymmetric combination of

|↑, ↓〉 and |↓, ↑〉 forms the ground state for small interactions (see Fig. 3.17).
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Figure 3.17: The energy levels of the first four states of the four- and five-site
Hubbard ring with two up-spin and two down-spin electrons. The
curvature of the ground state of the four-site ring is negative, whereas
the curvature of the ground state of the five-site ring is positive for
finite interactions. The lines are smoothly connected data from exact
diagonalization. The states are labeled according to their closest
equivalents in first order perturbation theory.

For the extended Hubbard model with nearest-neighbor interaction

V
∑

i

nini+1, (3.76)

the sign of the Drude weight stays the same for small interaction strengths V . As V
approaches U/2 in N = 4n half-filled systems, the gap between the antisymmetric
and symmetric states becomes smaller. They cross over and for V > U/2 the
Drude weight becomes positive. This is also true for negative U . In the U -V -
plane, the Drude weight is negative in the region below the V = U/2 line and
positive above (see Fig. 3.18). This was verified in a large number of points
ranging from −5t < U < 5t, −5t < V < 5t for the half-filled 4-site and 8-site
Hubbard rings with exact diagonalization.

The finding of a negative Drude weight does not depend on the special band
structure of the Hubbard model. All models with half-filled bands and N = 4n
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Figure 3.18: The sign of the Drude weight in the U -V -plane for the half-filled
extended Hubbard model on a ring of N = 4n sites. The Drude
weight is positive for predominantly on-site repulsion and nearest-
neighbor attraction.

sites with predominantly local repulsion or nearest-neighbor attraction should
exhibit negative Drude weight at zero temperature as long as the dispersion of the
noninteracting electrons is symmetric around the origin.
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4 A second-quantized model for
quantum rings

Starting from the expression for the free energy of a superconducting ring with
a single junction, we construct a model for a strongly correlated one-dimensional
quantum ring. The stationary persistent currents in static magnetic fields in su-
perconducting rings, which stem from the gauge invariance of the superconducting
wave function, create an internal magnetic flux in the ring. The proportionality
constant between the internal flux and the persistent current is the inductivity.
This constant also enters the relation between the energy stored in the internal
field and the persistent current. The persistent current in quantum rings also
generates an internal magnetic field. Therefore, the model that is constructed
in the second part of this chapter includes an inductivity. Although up to now
there is no method to estimate the inductivity of a quantum ring, the inclusion
of inductivity terms can be considered a simple approximation for the mechanism
of flux generation in a quantum ring. The persistent current determined from
the Schrödinger equation is plugged into the classical Maxwell equations to calcu-
late the flux that is generated. While there might be quantum electro-dynamical
corrections to this approach, it should contain interesting novel effects that can
be measured in custom-tailored experiments. These effects include spontaneous
persistent currents in quantum rings for zero external field.

To evaluate the novel effects sparked by the model constructed, a robust solu-
tion scheme is needed. Such a solution scheme based on the exact diagonalization
of the Hamiltonian after finding a fixed point for the current operator is presen-
ted. An examination of the fixed points of the current operator reveals the critical
inductivity below which there is only a single solution for the current operator
and above which there are multiple solutions. The different self-consistently de-
termined solutions of the current operator can lead to multiple stable expectation
values of the current. The interaction between the electrons plays a decisive role
in mixing the energy levels with several minima with respect to the current, that
would otherwise be too high energetically, into the ground state of the quantum
ring. For weak interactions, the inductivity of the ring has to be even higher in
order to drive the expectation value of the current at low temperatures into the
realm of different stable solutions.

Although it is probably not physically meaningful to have non-diagonal cur-
rent operators in momentum space, the existence of such non-diagonal current
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4 A second-quantized model for quantum rings

operators cannot formally be ruled out. For the special case of a ring with two
lattice sites and one electron, a proof for the non-existence of non-diagonal current
operators is demonstrated.

4.1 Motivation through SQUIDs

4.1.1 Minimization of the free energy

According to Ref. (SR95), the free energy of a superconducting ring with a 0- or
a π-junction is

F (j, φext) =
1

2
Lj2 − φsc0 jc

2π
cos

[

2π

φsc0
(φext + Lj) + α

]

, (4.1)

with α = 0 for unfrustrated SQUIDs and α = π for π-SQUIDs. The properties
of the free energy are determined by the dimensionless parameter γ = 2πLjc/φ

sc
0 ,

where jc is the critical current through the junction and φsc0 is the superconducting
flux quantum φsc0 = h

2|e| . In the following, we normalize the current to the critical
current j → j/jc. For small inductivities L (γ < 1), the behavior of the free energy
is dominated by Lj2. Clear enough, this term represents the energy that is stored
in the magnetic field that the current in the SQUID generates. The boundaries of
the superconducting wavefunction are twisted by the Aharonov-Bohm flux in the
SQUID. This leads to the oscillatory term containing the total magnetic flux in the
SQUID consisting of external flux φext and the internal flux φint = Lj. In special
geometric arrangements of the junction, the d-wave pairing in the superconductor
can be exploited to give antiperiodic boundary conditions. This is a π-junction
(TK00).

For larger inductivities, the cosine term oscillates with higher frequency with
respect to the current. This leads to a multivalued current for γ > 1 and φext ≈
(2m+1)φsc0 /2 (α = 0,m integer) and φext ≈ mφsc0 (α = π). A persistent current for
φext = 0 in π-SQUIDs is a consequence of the multivaluedness (see Fig. 4.1). We
have plotted the stable current states of the SQUID with respect to the external
flux in Fig. 4.2 and 4.3. These graphs were obtained by minimizing the free
energy with respect to the current for a given external flux with a bisection search
algorithm.

4.1.2 Iterative scheme

The dimensionless free energy is

Fφext(j) =
γ

2
j2 − cos(φext + γj + α). (4.2)

The free energy has a minimum under the condition

F ′φext(j) = γj + γ sin(φext + γj + α) = 0. (4.3)
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Figure 4.1: The free energy of a superconducting ring with a single junction for a
large inductivity. The external flux is zero.

This condition can be easily rewritten to give a fixed-point equation for the current,
which can be solved iteratively:

j(n) = G(j(n−1)) = − sin(φext + γj(n−1) + α). (4.4)

G is a contraction (|G(j1) − G(j2)| < g|j1 − j2|, 0 ≤ g < 1) on R for small
inductivities. Since G is continuously differentiable, it is a contraction, if the
absolute value of the first derivative is smaller than g, with g between 0 and 1.
This can be shown using the mean-value theorem. The absolute value of the first
derivative of G is always smaller than γ. For γ < 1 it is a contraction. Therefore,
the equation j = G(j) has a unique solution according to Banach’s fixed point
theorem for γ < 1 and the iterative scheme converges for every starting value
j0 ∈ R (Wal92).

Equation (4.4) is equivalent to the thermodynamic equation for the current:

j = − ∂F

∂φext
= − sin(φext + γj + α). (4.5)

The convergence is best if the starting value j(0)(φext + ε) is chosen to be
j(n→∞)(φext), for small ε. Thus starting with zero flux and increasing the cur-
rent in small steps results in the same graphs as the minimization process.
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Figure 4.2: The unfrustrated SQUID is diamagnetic for small fields. For external
fluxes near odd multiples of the flux quantum, the current is multival-
ued for high inductivities γ > 1.

Of course, for large inductivities γ > 1, the series of currents j(n) diverges,
because G is no longer a contraction. It has to be stabilized with

j(n) =
[

(1− λ)j(n−1) − λ sin(φext + γj(n−1) + α)
]

, (4.6)

with λ = 1
γ+1

according to Hillam’s theorem (Hil75). The images below were thus
produced with the use of this algorithm (see Fig. 4.4). A quantum-mechanical
equivalent of this iterative method is now motivated and applied to quantum
rings.

4.2 The model and its analytic properties

In this section, we propose a model Hamiltonian for electrons on a quantum ring.
The model is a close relative of the Hubbard model. In addition to the Hubbard
model, the internal flux that the persistent current generates is taken into ac-
count. After explaining the Fourier transform that transforms the many-particle
states from real space (the space where the Hamiltonian can be most comfortably
written down) to momentum space (where the eigenstates are easier to be found),
an iterative solution scheme for the model is introduced. This solution scheme
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4.2 The model and its analytic properties

Figure 4.3: The π-SQUID is paramagnetic at small field strengths and small in-
ductivities γ < 1. For high inductivities (γ > 1), the π-SQUID is
ferromagnetic.

minimizes the diagonal matrix elements of the Hamiltonian matrix in momentum
space with respect to the eigenvalues of the current operator. The current oper-
ator is diagonal in momentum space. A rather important subsection is devoted
to proving that the Hamiltonian matrix with the minimal diagonal elements in
momentum space leads to the minimal eigenvalues of the Hamiltonian. Thus, it
is proven that the iterative solution scheme leads to the persistent current that
minimizes the free energy of the quantum ring. Afterwards, the circumstances un-
der which the proposed model allows for one or more solutions for the persistent
current are investigated. For inductivities of the ring below a certain bound (the
critical inductivity), there is only one fixed-point for the persistent current. Ho-
wever, above the critical inductivity, there may be more than one fixed-point for
the persistent current. An asymptotic expansion for very high inductivities elu-
cidates the behavior of the solutions in this limit. Whether the model also allows
for the existence of non-diagonal—but probably physically meaningless—current
operators is examined in the last subsection of this section.
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Figure 4.4: For a 0-SQUID with inductivity γ = 1.5, the iterative scheme is tested
vs. the bisection search minimization. The iterative scheme is started
at zero flux and continued stepwise to larger external fluxes, setting
the initial value of the current to the converged current of the last
step. This procedure keeps the current on one branch of fixed points
as long as there is a solution on the branch. The graph was produced
using a fixed number of 8 iterations.

4.2.1 The model Hamiltonian

We use semi-empirical one-band models with only nearest-neighbor hybridization
t to describe the π-electrons of cyclic hydrocarbons, for example, the Hubbard
model, the extended Hubbard model, or the Pariser-Parr-Pople (PPP) model.
These models are described by the Hamiltonian

H =− t
∑

lσ

(

c†l+1,σ cl,σ + c†l,σ cl+1,σ

)

+ U
∑

l

nl↑ nl↓+
1

2

∑

l 6=m

Vlm nl nm,
(4.7)

where c†lσ creates an electron with spin σ on site l, nlσ = c†lσ clσ, and nl = nl↑+ nl↓.
The sums are taken over all N sites, and periodic boundary conditions are used.
The Coulomb interaction between the electrons is modeled by an on-site repulsion
U and by a long-range repulsion Vlm (which is zero for the Hubbard model). The

78



4.2 The model and its analytic properties

extended Hubbard model also includes a nearest-neighbor repulsion (Vlm 6= 0 for
|l−m| = 1). In the PPP model, the Coulomb repulsion can be parameterized by
the Ohno (Ohn64) potential with a dielectric constant εr > 1 (CB02):

Vlm =
U

εr
√

1 + ζr2
lm

, (4.8)

where we must choose
ζ =

(

U

1.4397 nmeV

)2

, (4.9)

in order to ensure that Vlm → e2/4πε0εrrlm as rlm →∞ (BCB98). The dielectric
constant originates from the screening of the π-electrons by the σ-electrons and
from screening effects from the environment.

In these models, the twist of the phase in the wave function in the presence
of an Aharonov-Bohm flux can be partitioned into phase shifts for every hopping
process. Therefore, the kinetic energy part of the Hamiltonian is modified with
the usual Peierls phase factor exp( 2πi

Nφ0
φext), where φ0 = h/|e| is the flux quantum.

In natural units (e = c = ~ = kB = 1, [Energy] = 1 eV), the flux quantum equals
2π. The Hamiltonian shown in Eq. (4.14) is the Hamiltonian needed to calculate
the Drude weight D, which is the dc conductivity of an electronic system in the
thermodynamic limit. The thermodynamic limit for one-dimensional systems is
the limit in which the number of sites N approaches infinity. However, for small
rings, the quantum nature of the system could lead to equilibrium persistent
currents, leading the concept of conductivity ad absurdum. This corresponds
to systems with two minima in the ground-state energy E0, with respect to the
external flux. The curvature of the ground-state energy between those minima is
negative, leading to a negative Drude weight (SMS91; FMS+91).

If the system is given the opportunity to generate an internal flux itself, by
letting a persistent current

j = − ∂ H

∂φext
(4.10)

flow, the system falls into the minimum of the ground-state energy with respect
to the internally generated flux

φint = Lj. (4.11)

We assume the inductivity L—which depends only upon the geometry of the
system—to be a valid concept down to the scale of organic molecules. This ap-
proximation corresponds to a time-averaged linearization of the coupling between
the moving charges and the magnetic field. The inductivity is a fit parameter in
our calculations; it can only be roughly estimated for molecules. The internal flux
leads to an additional phase shift represented by the unitary phase-shift operator

P ≡ e−
i
N
L j. (4.12)
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4 A second-quantized model for quantum rings

The current operator appears in the exponential because the eigenstates carry
different quantities of current, leading to a different phase shift for different eigen-
states.

The energy that is stored in the internal magnetic field of an electronic quantum
ring, e.g., a cyclic hydrocarbon,

L

2
j2, (4.13)

must be added to the model under consideration. This term boosts the eigenen-
ergies of the current carrying eigenstates.

The complete Hamiltonian is:

H =− t
∑

lσ

[

e
i
N

(φext+L j) c†l+1,σ cl,σ

+ c†l,σ cl+1,σ e
− i
N

(φext+L j)
]

+ U
∑

l

nl↑ nl↓+
1

2

∑

l 6=m

Vlm nl nm

+
1

2
L j2 .

(4.14)

This Hamiltonian is motivated by the free energy of superconducting rings with a
conventional or a π-junction given in Ref. (SR95).

Let us simplify the notation by introducing operators for the sum of leftward
hopping and the sum of rightward hopping terms as well as for the interaction:

C ≡ −te−
i
N
φext
∑

lσ

c†l,σ cl+1,σ

= −te−
i
N
φext
∑

kσ

eik nkσ,

C† = −te
i
N
φext
∑

lσ

c†l+1,σ cl,σ,

W ≡ U
∑

l

nl↑ nl↓+
1

2

∑

l 6=m

Vlm nl nm .

(4.15)

The kinetic energy can then be expressed as

K = C P + P†C† . (4.16)

The current operator is

j = − ∂ H

∂φext
=

i

N

(

C P−P†C†
)

. (4.17)

The kinetic energy and the current are obviously Hermitian operators. Although
it is difficult to prove rigorously, it is physically obvious that the kinetic energy
and the current are diagonal in momentum space (see 4.2.8). Consequently, any
two operators from the set {C,C†,P,P†, j,K} commute with each other.
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4.2 The model and its analytic properties

4.2.2 Fourier transform of the many-particle states

We derive a transformation matrix from real space to momentum space. The
current and the kinetic energy of our model are diagonal in momentum space.
With the transformation, we can reduce the problem of finding a fixed point for
the current operator to a set of one-dimensional problems of finding fixed points for
every eigenvalue of the current operator. Therefore, the following transformation
is essential in finding the eigenstates of the model Hamiltonian (4.14).

For a system with n spinless fermions on N lattice sites, the basis states in real
space are

∣

∣xl
〉

= c†l1 · · · c†ln |0〉 , l 7−→ (l1, . . . , ln). (4.18)
The number l ∈ {1, . . . , dimH} counts the basis states. It can be mapped to a set
of integers (l1, . . . , ln) denoting the occupied lattice sites. Analogously, the basis
states in momentum space are |pκ〉. The transformation matrix transforms the
expansion coefficients of a state |ψ〉 from one basis to the other:

〈

pκ
∣

∣ψ
〉

=
dimH
∑

l=1

〈

pκ
∣

∣xl
〉

︸ ︷︷ ︸

Uκl

〈

xl
∣

∣ψ
〉

. (4.19)

The following transformation for every single creation operator in the many-
particle state is needed to perform the transformation:

c†li =
1√
N

N−1
∑

κj=0

e−
2πiκjli
N c†κj . (4.20)

The transformation matrix is thus
Uκl = 〈0| cκn · · · cκ1 c†l1 · · · c†ln |0〉

=

(

1√
N

)n N−1
∑

κ′1,...,κ
′
n=0

e−
2πi
N

(κ′1l1+···+κ′nln) 〈0| cκn · · · cκ1 c†κ′1 · · · c
†
κ′n |0〉 .

(4.21)

The sum in (4.21) does not have to be taken over all combinations of (κ′1, . . . , κ
′
n).

The permutations of (κ1, . . . , κn) are sufficient, since the other addenda do not
contribute to the sum. Depending on the sign of the permutation, the scalar
product is ±1:

Uκl =

(

1√
N

)n
∑

(κ′1,...,κ
′
n)=P (κ1,...,κn)

sgn(P )e−
2πi
N

(κ′1l1+···+κ′nln). (4.22)

This matrix is easily generalized to electrons with spin:

Uκl =
∏

σ∈{↓,↑}

(

1√
N

)nσ
∑

(κ′1σ ,...,κ
′
nσ)=P (κ1σ ,...,κnσ)

sgn(P )e−
2πi
N

(κ′1σl1σ+···+κ′nσlnσ). (4.23)

With this matrix it is possible to comfortably switch between the representations
of the operators and states in momentum and real space.
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4 A second-quantized model for quantum rings

4.2.3 Iterative scheme

The current operator is defined implicitly to be the current operator that minim-
izes the free energy resulting from the model Hamiltonian (4.14). The metastable
current states are found as the local minima of the free energy. We will derive a
solution scheme of the model in this section. The current operator will be determ-
ined iteratively. We first state the iterative scheme and afterwards prove that it
minimizes the free energy with respect to the current operator.

Before starting the iteration (n = 1), we choose the current to be

j(0) = 0. (4.24)

The iterative scheme is the search for a fixed point of the current operator:

P(n) = e−
i
N
L j(n−1)

j(n) = − ∂ H

∂φext
=

i

N

(

C P(n)−P†(n) C†
)

.
(4.25)

The corresponding fixed-point equation is

j = G(j) ≡ i

N

[

C P(j)− P†(j) C†
]

. (4.26)

Thus, the current operator is determined without linearizing the Hamiltonian
with respect to the external field. In momentum space, we may think of the above
equations as dim(H) uncoupled equations for the eigenvalues of the operators
instead of the operators themselves, because of diagonality.

In the following, we show that the free energy is minimized with respect to the
current operator by the iterative scheme. In fact, every single energy eigenvalue is
minimized. In momentum space, the alternation of the eigenvalues due to a change
in the current operator is determined by the diagonal elements of the matrix
representing the Hamiltonian. The off-diagonal matrix elements correspond to
the interaction of the electrons and are independent of the current operator.

4.2.4 Minimization of the free energy

The iterative solution scheme of the last subsection is useless, if it just minimizes
the diagonal elements of the Hamiltonian matrix in momentum space. Here,
we will prove that the current operator that minimizes the diagonal elements
of the Hamiltonian in momentum space also minimizes the eigenvalues of the
Hamiltonian and therefore the free energy.

Assuming the minimal diagonal elements of the Hamiltonian matrix in mo-
mentum space were found, every other possible Hamiltonian matrix could be de-
scribed by the sum of the minimal Hamiltonian matrix and a positive semidefinite
matrix. Any alternation with a positive semidefinite matrix leads to an increase of
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some eigenvalues. In section 4.2.5 we will develop a criterion under which the it-
erative scheme converges and minimizes the diagonal elements of the Hamiltonian
in momentum space.

In the notation defined above, the Hamiltonian can be written as:

H = C P + P†C†+
1

2
L j2 + W . (4.27)

The first three terms are diagonal in momentum space with diagonal entries com-
posed of the eigenvalues of the hopping, phase-shift, and current operator (Cκ, Pκ,
jκ). Let the eigenstates of the noninteracting many-particle system in momentum
space be |pκ〉 with κ ∈ {1, . . . , dimH}. The Jacobian

∂ Hκξ

∂ jζ
= δκξδξζL

{

i

N
[(Pκ)∗(Cκ)∗ − Cκ Pκ] + jκ

}

(4.28)

of the Hamiltonian with respect to the current eigenvalues must be

∂ Hκξ

∂ jζ
= 0, ∀κ, ξ, ζ ∈ {1, . . . , dimH}. (4.29)

This condition is necessary for the elements of the Hamiltonian matrix in this
representation to have minima and is automatically fulfilled if the iterative scheme
converges. It is sufficient for the existence of minima that the diagonal elements
of the tensor containing the second derivatives are positive:

∂2 Hκξ

∂(jζ)2
= δκξδξζL

{

1− L

N2
[Cκ Pκ +(Pκ)∗(Cκ)∗]

}

> 0, ∀κ = ξ = ζ ∈ {1, . . . , dimH}.
(4.30)

Since the off-diagonal elements of the Hamiltonian are constant, the tensor is
diagonal.

We assume that the current j(∞) minimizes the diagonal elements of the Ham-
iltonian. Any deflection of the current from this position corresponds to a small
perturbation of the Hamiltonian with a positive semidefinite matrix M . The
Hamiltonians from previous iterations exhibit larger diagonal elements than the
converged Hamiltonian H(∞) in momentum space:

H(n) = C P(n) + P†(n) C†+
L

2
j2(n) + W (4.31)

H(n)−H(∞) = M = diag(d1, . . . , ddimH), ∀1 ≤ l ≤ dimH : dl ≥ 0. (4.32)

Adding a diagonal matrix to a normal matrix changes the eigenvalues within well
defined boundaries. So for every eigenvalue Eκ

(∞) of H(∞) there is an eigenvalue
Eκ

(n) of H(n) with
|Eκ

(∞) − Eκ
(n)| ≤ ‖M‖ = max

l
|dl|. (4.33)
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Therefore, the eigenvalues of the Hamiltonian lie within disks around the eigenval-
ues of the nth approximation to the Hamiltonian, if the iterative scheme converges.
For the special case of the Hermitian Hamiltonian and the real diagonal perturb-
ation M , these disks are simple intervals. Furthermore, if the Hamiltonian is
nondegenerate (i.e., the eigenvectors and eigenvalues are differentiable functions
with respect to a small perturbation), it can be proven that the energy eigenvalues
are minimal at the current j(∞), because a perturbation with a positive semidefin-
ite matrix M to a Hermitian matrix H(∞) makes the eigenvalues larger (Har01).
The first derivative of the eigenvalues with respect to the perturbation is positive
or zero. The eigenvalue equation is

(

H(∞) +ξM
)

|pκ〉 (ξ) = Eκ(ξ) |pκ〉 (ξ) (4.34)

for small values of the positive parameter ξ. Differentiation with respect to ξ leads
us to:

H(∞)

[

∂

∂ξ
|pκ〉

]

(ξ) +M |pκ〉 (ξ) + ξM

[

∂

∂ξ
|pκ〉

]

(ξ)

= |pκ〉 (ξ)
[

∂

∂ξ
Eκ

]

(ξ) + Eκ(ξ)

[

∂

∂ξ
|pκ〉

]

(ξ).

(4.35)

At ξ = 0 [|pκ〉 ≡ |pκ〉 (0)] we get

H(∞)
∂

∂ξ
|pκ〉 − Eκ(0)

∂

∂ξ
|pκ〉 =

[

∂

∂ξ
Eκ

]

(0) |pκ〉 −M |pκ〉 . (4.36)

Multiplication with the left eigenvector of H(∞) results in

0 =

[

∂

∂ξ
Eκ

]

(0)
〈

pκ
∣

∣pκ
〉

− 〈pκ| M |pκ〉 . (4.37)

Thus the first derivative of the eigenvalues is a positive semidefinite Hermitian
form:

[

∂

∂ξ
Eκ

]

(0) =
〈pκ|M |pκ〉
〈

pκ
∣

∣pκ
〉 ≥ 0. (4.38)

This result holds for any perturbation (ξ ≥ 0) of the current from its minimizing
position. Consequently we obtain that

Eκ
(∞) ≡ Eκ(j(∞)) ≤ Eκ(j), (4.39)

for all κ and for all possible current operators in some finite neighborhood of
j(∞). We can now partition the current space into small finite neighborhoods and
extend the above calculation to a larger neighborhood of j(∞). If the minimum
of the diagonal matrix elements is global, the minimum of the eigenvalues is also
global. The above relation (4.39) is only strictly valid if the Hamiltonian is nonde-
generate near j(∞). However, if we look at the maximally degenerate case of zero
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interaction, the eigenvalues of the Hamiltonian are identical to the diagonal mat-
rix elements. Equation (4.39) also holds trivially in that case. Therefore, there is
strong evidence that the following statement is always true: The minima of the
eigenenergies of the system with respect to the current are the eigenvalues of the
Hamiltonian whose diagonal matrix elements are minimized in momentum space.
The minimal diagonal matrix elements are found if the two criteria (4.29) and
(4.30) are matched.

4.2.5 The critical inductivity

The convergence of the iterative scheme is investigated here. Below a certain
bound of the inductivity, the critical inductivity, the iterative solution scheme
converges to one fixed-point of the current operator. Above the critical inductivity,
more than one fixed-point for the current operator can be found. The critical
inductivity is therefore a very important point at which the physical characteristics
of quantum rings change dramatically.

The condition (4.29) is automatically fulfilled if the iterative scheme (4.25)
converges. A criterion for the convergence of the sequence of currents is the
Banach fixed point theorem. We apply it to determine the parameter range for
which there is only one stable current state for each external flux.

The space of linear operators on the Hilbert space H is a complete vector space
with the operator norm

‖O‖ = sup
|ψ〉6=0

|ψ〉∈H

|O |ψ〉 |
| |ψ〉 |

, (4.40)

and therefore a Banach space. A contraction O on a Banach space is defined to
be a mapping from a closed subset D of the Banach space onto D, fulfilling a
Lipschitz condition

‖O(x2)−O(x1)‖ ≤ g‖x2 − x1‖ (4.41)

for all x1, x2 ∈ D, where 0 ≤ g < 1. The Banach fixed point theorem states the
convergence of the iterative scheme x(n+1) = O(x(n)) to one and only one fixed
point of O for any starting value x(0) ∈ X.

The operator G in the fixed point equation (4.26) fulfills a Lipschitz condition:

‖G(j2)−G(j1)‖ ≤ g‖j2 − j1‖. (4.42)

It is a contraction if 0 ≤ g < 1. The operator G is diagonal and Hermitian in
momentum space. Therefore it is considered as a simple continuously differentiable
function G : RdimH −→ RdimH. We derive an estimation for the smallest possible
Lipschitz constant of G in the following. Let ∂G

∂ j
be the Jacobian matrix of the
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operator G:
(

∂G

∂ j

)

κξ

≡ ∂Gκ

∂ jξ

= δκξ
L

N2
[Cκ Pκ +(Pκ)∗(Cκ)∗] ,

(4.43)

with

‖G(j +∆j)−G(j)‖ = ‖
1
∫

0

∂G

∂ j
(j +t∆j) ·∆j dt‖

≤
1
∫

0

‖∂G

∂ j
(j +t∆j)‖‖∆j‖dt

≤
(

sup
0≤t≤1

‖∂G

∂ j
(j +t∆j)‖

)

‖∆j‖.

(4.44)

The smallest possible global Lipschitz constant can be estimated as:

g = sup‖∂G

∂ j
‖

=
L

N2
sup‖C P(j) + P†(j) C†‖

≤ L

N2

(

‖C‖+ ‖C†‖
)

=
2L

N2
|λmax(C)|.

(4.45)

The Hermiticity of j, unitarity of P, normality of C, and the triangle inequality
have been used. Here λmax(C) denotes the complex eigenvalue of the operator C
with the largest absolute value. It follows that G is a contraction (g < 1) if the
condition

L < Lc =
N2

2|λmax(C)|
(4.46)

is satisfied. The hopping operator is diagonal in momentum space. Thus we obtain

Lc =
N2

2tmaxκ |
∑

kσ e
ik 〈pκ| nkσ |pκ〉 |

, (4.47)

where the maximum is taken over all normalized configurations of the electrons
in momentum space |pκ〉.

The sufficient criterion (4.30) is also fulfilled. The supremum g of the norm of
the Jacobian matrix of G is smaller than one, therefore the entries in the Jacobian
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matrix are also smaller than one. In terms of the Jacobian matrix the criterion
(4.30) reads

∂2 Hκξ

∂(jζ)2
= δκξδξζ

{

1−
(

∂G

∂j

)

κκ

}

> 0, ∀κ = ξ = ζ ∈ {1, . . . , dimH}.
(4.48)

The physical essence of this result is that for inductivities smaller than the critical
inductivity Lc, the current is a unique, single valued function of the external flux.

Furthermore, the expectation value of the current is an antisymmetric function
of the external flux. The current operator is antisymmetric in φext. This can be
verified by looking at the eigenvalues of the current operator. The eigenvalues
are proportional to the imaginary part of eiφext/N , which is clearly antisymmetric.
The density matrix of the problem is symmetric, because the external flux enters
the Hamiltonian only through the kinetic energy operator and the square of the
current operator. Both are symmetric in φext. Therefore, there is no persistent
current for zero external flux (〈j(φext)〉 = 0, for φext = 0) and for inductivities
L ≤ Lc. States with a spontaneous orbital magnetic moment without external
magnetic field are only possible for inductivities L > Lc.

The convergence of the scheme can be tested numerically by the operator norm
of the difference of current operators of two successive iteration steps:

‖∆ j(n)‖ ≡ ‖j(n)− j(n−1)‖
n→∞−→ 0. (4.49)

The iterative procedure may be considered to have reached convergence once the
spectral norm ‖∆ j(n)‖ drops below a certain bound. The convergence for very
small rings becomes exponential in n after sufficiently many steps (see Fig. 4.5).
The expectation value of the free energy is seen to be lowered in each iteration
step while the expectation value of the current reaches its equilibrium value.

4.2.6 Modification for large inductivities

Above the critical inductivity the iterative scheme does not converge in general.
This can occur for certain values of the external flux. In this case, there is more
than one stable current state. Since the current operator and the phase-shift
operator in Eq. (4.25) are diagonal, it is possible to reduce the scheme to dimH
one-dimensional searches for fixed points. For fixed points of one-dimensional
functions, Hillam’s theorem (Hil75) provides an iterative scheme to find a fixed
point for every single eigenvalue of the current operator. Let gκ be the Lipschitz
constant for the κ-th eigenvalue of the current operator [analog to Eq. (4.45)]:

gκ =
2L|Cκ |
N2

. (4.50)
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Figure 4.5: Free energy, current and the difference of the norm of successive current
operators on a logarithmic scale were obtained for the extended Hub-
bard model on 4 sites with 2 up and 2 down electrons with t = 1 eV,
U = 4 eV, V = 3 eV, L = 2.5/eV, φext = 1.5 at T = 0.01 eV. The
critical inductivity for this model is Lc = 2

√
2/eV ≈ 2.8284/eV.

Hillam’s theorem states that the iterative scheme

Pκ
(n) = e−

i
N
L jκ

(n−1)

jκ(n) = − 2

N
Im(Cκ Pκ

(n))

jκ(n) = λκ jκ(n) +(1− λκ) jκ(n−1)

∆ jκ(n) =
1

λκ
(

jκ(n)− jκ(n−1)

)

(4.51)
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4.2 The model and its analytic properties

will converge when λκ = 1
gκ+1

. The iteration starts with n = 1. The current
eigenvalues {jκ(0)} can be set in order to find different branches of the solution. A
criterion for the convergence of the scheme is maxκ

(

∆ jκ(n)

)

< ε. After the con-
vergence criterion is satisfied, it still has to be verified that the current minimizes
the energy eigenvalues. Consequently, the criterion

min
κ

∣

∣

∣

∣

1− 2L

N2
Re(Cκ Pκ

(∞))]

∣

∣

∣

∣

> 0 (4.52)

needs to be checked up, in analogy to Eq. (4.30).

4.2.7 Asymptotic expansion for large inductivities

We can expand the solution for every eigenvalue of the current operator in mo-
mentum space asymptotically for high inductivities. The implicit equations that
determine the eigenvalues of the current operator are

jκ =
2tñ

N
sin

[

K − 1

N
(Ljκ + φext)

]

. (4.53)

Here ñ and K are defined by the equation

eiK ñ =
∑

kσ

eik 〈pκ| nkσ |pκ〉 , (4.54)

where ñ is a positive real number. |pκ〉 denotes the eigenstates of the noninteract-
ing Hamiltonian in momentum space. We define Jκ = Ljκ, so that

Jκ

L
=

2tñ

N
sin

[

K − 1

N
(Jκ + φext)

]

. (4.55)

We recognize that there are infinitely many solutions for the lowest order coefficient
of the expansion Jκ =

∑∞
n=0

1
Ln
Jκn , namely

Jκ,m0 = N (K + 2mπ)− φext, m ∈ 1

2
Z. (4.56)

From the equation of the energy eigenvalues

Eκ = −2tñ cos

[

K − 1

N
(Jκ,m + φext)

]

+
1

2

(Jκ,m)2

L
, (4.57)

it is evident that the Jκ,m0 for m ∈ Z are in fact the minima of the eigenenergies
(for L→∞). The expansion to second order in 1

L
is Jκ,m =

∑2
n=0

(

− N2

2tLñ

)n

Jκ,m0 .
This is the beginning of an alternating series of terms that are linear in Jκ,m0 .
These terms are therefore also linear in φext. The gradient of the sequence of the
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4 A second-quantized model for quantum rings

partial sums of this series with respect to φext alternates around the gradient of
the tangent to the real solution at the point φext = N(K + 2mπ). The sum of all
terms of the expansion that are linear in φext is

Jκ,m =
∞
∑

n=0

(

− N2

2tLñ

)n

Jκ,m0 +O

(

1

L3

)

=
2tLñ

N2 + 2tLñ
Jκ,m0 − N3(Jκ,m0 )3

48t3L3ñ3
+ (Jκ,m0 )3O

(

1

L4

)

,

jκ,m =
2tñ

N2 + 2tLñ
[N(K + 2πm)− φext] +O

(

1

L4

)

.

(4.58)

We take the sum of the terms linear in φext for the following reason: the jκ,m(φext)
are good approximations for large inductivities (to third order in 1/L), they are
also tangents of the real solutions at the points φext = N(K + 2πm), m ∈ Z for
small inductivities. Therefore, the approximation is also a second-order approxi-
mation if Jκ,m0 = N(K + 2πm) − φext is considered as a small parameter. The
next-order contribution is a third order term in Jκ,m0 which is fourth order in 1/L.
This shows that the real solutions of j are bounded from above by the lines jκ,m
for φext < N(K + 2πm) and are bounded from below for φext > N(K + 2πm) for
sufficiently high inductivities. This is important for the following estimation of
the possible number of simultaneous solutions of the current at a given φext. We
can compare the value of the critical inductivity with the value of the inductivity
for which we first detect two solutions.

The maximum of the current that can be a solution of Eq. (4.53) is |jκ| ≤ 2t
N
.

We obtain the following interpretation of Fig. 4.6: The closer the solutions lie
to the line j = 0, the lower is their energy, because of the 1

2
L(jκ)2 contribution.

The real solutions jump from one m-level jκ,m to the next jκ,m±1 or interpolate
between them continuously at low inductivities.

The number of solutions Ns for jκ(φext) at a given value of φext can be approx-
imated as the number of lines jκ,m intersecting the line φext = 0 in the interval
j ∈ [−2t/N, 2t/N ] (circles in Fig. 4.6), which can be evaluated to be roughly

Ns =
1

2π

(

2−K +
4tLñ

N2

)

+ 1

L→∞
≈ 2tLñ

πN2
.

(4.59)

We can draw the following conclusion from the above calculations: The ring cur-
rent is a finite size effect that decreases with the reciprocal system size for all
L > 0. The possibility to find several stable current states decreases even more
strongly with 1/N2. However, it grows linearly with the inductivity. The value of
one solution jκ,m goes to zero like 1/L for high inductivities.
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Figure 4.6: Sketch of the asymptotic expansion (solid lines) and the real solution
(dashed lines).

4.2.8 Examination of the diagonality of the current operator

The kinetic energy and the current have been assumed to be diagonal in mo-
mentum space for physical reasons. This can be verified for low inductivities. For
low inductivities the phase shift operator is close to the identity and the hopping
operator is diagonal [see Eq. (4.15)], leading to a diagonal current and kinetic en-
ergy. However, it is not clear whether the above equations allow for non-diagonal
solutions and whether there is a physical meaning of these solutions if they exist at
all. For a two-site model we prove below that there are only diagonal solutions of
the equation (4.17). It is therefore plausible to expect that the physical solutions
of the current operator are always diagonal in momentum space.

We start with the operators constituting the Hamiltonian of the system:

P ≡ e−
i
N
L j,

C ≡ −te−
i
N
φext
∑

kσ

eik nkσ,

j =
i

N

(

C P−P†C†
)

.

(4.60)

For a system with two lattice sites and one electron, the matrix representing the
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4 A second-quantized model for quantum rings

hopping operator in momentum space is

C = −te−
i
2
φextσ3. (4.61)

The current operator is a Hermitian matrix. Every Hermitian 2×2 matrix can be
expressed as a linear combination of the Pauli matrices and the identity. Therefore,
the current is

j = a011 + a · σ, (4.62)

where σ denotes the vector of the three Pauli matrices:

σ =

























(

0 1
1 0

)

(

0 −i
i 0

)

(

1 0
0 −1

)

























. (4.63)

The expansion coefficients ai are real. The direction of the current operator is
determined by â:

a = aâ

â =





cosϕ sinϑ
sinϕ sinϑ

cosϑ.





(4.64)

The current operator is diagonal in momentum space if the angle ϑ is zero. Then
the current operator can be purely expanded in terms of the identity and the σ3

matrix.
With the use of these definitions, we obtain the current operator

j =
it

2

(

e
i
2
L je

i
2
φextσ3 − e−

i
2
φextσ3e

− i
2
L j
)

, (4.65)

or, inserting the Pauli matrix expansion,

a011 + a · σ =
it

2

(

e
i
2

(φext+La0)e
i
2
La·σσ3 − e−

i
2

(φext+La0)σ3e
− i

2
La·σ

)

. (4.66)
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The matrix exponential can be evaluated to be

e−
iL
2

a·σ =
∞
∑

n=0

(

iL
2
a · σ

)2n

(2n)!
−
∞
∑

n=0

(

iL
2
a · σ

)2n+1

(2n+ 1)!

=
∞
∑

n=0

(−1)n

(2n)!

(

L

2
a

)2n

11− ia · σ
a

∞
∑

n=0

(−1)n

(2n+ 1)!

(

L

2
a

)2n+1

= 11 cos
La

2
− ia · σ

a
sin

La

2

=

(

cos La
2
− i cosϑ sin La

2
−i sinϑ e−iϕ sin La

2

−i sinϑ eiϕ sin La
2

cos La
2

+ i cosϑ sin La
2

)

≡
(

a b
−b∗ a∗

)

,

(4.67)

where we used

(a · σ)2 =

(

a3 a1 − ia2

a1 + ia2 −a3

)(

a3 a1 − ia2

a1 + ia2 −a3

)

=

(

a2 0
0 a2

)

= a211.
(4.68)

The exponential is a unitary operator because of the Hermiticity of the exponent.
Therefore we get

e+ iL
2

a·σ =

(

cos La
2

+ i cosϑ sin La
2

i sinϑ e−iϕ sin La
2

i sinϑ eiϕ sin La
2

cos La
2
− i cosϑ sin La

2

)

=

(

a∗ −b
b∗ a

)

. (4.69)

For the further calculations, the effect of multiplying an arbitrary matrix by one
of the Pauli matrices is needed to be known:

(

a b
c d

)

σ1 =

(

b a
d c

)

(

a b
c d

)

σ2 =

(

ib −ia
id −ic

)

(

a b
c d

)

σ3 =

(

a −b
c −d

)

σ3

(

a b
c d

)

=

(

a b
−c −d

)

.

(4.70)
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Applying the trace to Eq. (4.66) results in a first self-consistency equation:

a0 =
1

2
Tr (a011 + a · σ)

=
it

4
Tr

[

e
i
2

(φext+La0)

(

a∗ b
b∗ −a

)

− e−
i
2

(φext+La0)

(

a b
b∗ −a∗

)]

=
it

4
(a∗ − a)

[

e
i
2

(φext+La0) + e−
i
2

(φext+La0)
]

= − t
2

cosϑ sin
La

2

[

e
i
2

(φext+La0) + e−
i
2

(φext+La0)
]

= −t cosϑ sin
La

2
cos

φext + La0

2

= −ta3

a
sin

La

2
cos

φext + La0

2
.

(4.71)

The second equation is obtained by multiplying the initial equation (4.66) with
the first Pauli matrix and taking the trace afterwards:

a1 =
1

2
Tr [(a011 + a · σ)σ1]

=
it

4
Tr

[

e
i
2

(φext+La0)

(

a∗ b
b∗ −a

)

σ1 − e−
i
2

(φext+La0)

(

a b
b∗ −a∗

)

σ1

]

=
it

4
Tr

[

e
i
2

(φext+La0)

(

b a∗

−a b∗

)

− e−
i
2

(φext+La0)

(

b a
−a∗ b∗

)]

=
it

4
(b+ b∗)

[

e
i
2

(φext+La0) − e−
i
2

(φext+La0)
]

= −it
2

sinϑ sin
La

2
sinϕ

(

e
i
2

(φext+La0) − e−
i
2

(φext+La0)
)

= t sinϑ sin
La

2
sinϕ sin

φext + La0

2

= t
a2

a
sin

La

2
sin

φext + La0

2
.

(4.72)
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Analogously, a third and a forth self-consistency equation are obtained:

a2 =
1

2
Tr [(a011 + a · σ)σ2]

=
it

4
Tr

[

e
i
2

(φext+La0)

(

a∗ b
b∗ −a

)

σ2 − e−
i
2

(φext+La0)

(

a b
b∗ −a∗

)

σ2

]

=
it

4
Tr

[

e
i
2

(φext+La0)

(

ib −ia∗
−ia −ib∗

)

− e−
i
2

(φext+La0)

(

ib −ia
−ia∗ −ib∗

)]

= − t
4

(b− b∗)
[

e
i
2

(φext+La0) − e−
i
2

(φext+La0)
]

=
it

2
sinϑ sin

La

2
cosϕ

[

e
i
2

(φext+La0) − e−
i
2

(φext+La0)
]

= −t sinϑ sin
La

2
cosϕ sin

φext + La0

2

= −ta1

a
sin

La

2
sin

φext + La0

2
,

(4.73)

a3 =
1

2
Tr [(a011 + a · σ)σ3]

=
it

4
Tr

[

e
i
2

(φext+La0)

(

a∗ −b
b∗ a

)

− e−
i
2

(φext+La0)

(

a −b
b∗ a∗

)]

=
it

4
(a+ a∗)

[

e
i
2

(φext+La0) − e−
i
2

(φext+La0)
]

= − t
2

(a+ a∗) sin
φext + La0

2

= −t cos
La

2
sin

φext + La0

2
.

(4.74)

The equations for a1 and a2 are of the form a1 = ξa2 and a2 = −ξa1. Since
the only solution of these equations is a1 = a2 = 0, the current operator can be
expanded in terms of the identity and the σ3 Pauli matrix, which are diagonal.
The current operator for the special case of a two-site model with one electron
has thus been proven to possess only diagonal solutions in momentum space.
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4.3 Numerical examination and physical consequences

In this section, we apply the proposed method to physical systems. Realistic
parameters for cyclic hydrocarbon, especially the π-electrons in benzene are given
and applied. The magnetic properties of benzene due to ring-current effects are
evaluated.

In the last part of this section, we exhibit a system with a hysteresis loop in the
magnetization with respect to the external field. The hysteresis loop is centered
around the external field value of half a flux quantum in the ring. The system is
a half filled four-site Hubbard ring. The phenomenon of the hysteresis loop is not
restricted to this system; it should be found in any system with a negative Drude
weight. Apart from half filled Hubbard rings, rings of noninteracting electrons
with a band structure that cannot be approximated by a straight line around the
Fermi points can possess a negative Drude weight. In a system with a negative
Drude weight and six lattice sites, the hysteresis loop would be centered around
zero external flux. Thus there would exist a spontaneous orbital magnetic moment
without external magnetic field.

4.3.1 Realistic parameters

The work of Castleton, Bursill and Barford (CB02; BCB98) makes it seems reas-
onable to choose the parameters of the PPP model for benzene as follows:

t = 2.64 eV,
U = 8.9 eV,
εr = 1.28.

(4.75)

We estimate the inductivity of a molecule. If we take a look at the inductivity of
a non-ferromagnetic classical conducting ring in vacuum of the size of a benzene
molecule, we find that the inductivity

L = µ0R

{

1

4
+

[

ln

(

8R

r

)

− 2

]}

(4.76)

will be very small. The radius of the ring R in the above equation is about
140 pm. If the radius r of the conductor itself were about R/5, the inductivity
would be about L ≈ 0.02/eV in natural units. However, the inductivity is a
phenomenological parameter that has to be fitted to experiments. We try a large
range of inductivities to show what kind of effects might arise because of the
inductivity of a molecule or a ring of coupled quantum dots.

4.3.2 Benzene

The magnetic susceptibility of aromatic compounds is anisotropic. In benzene, the
diamagnetic susceptibility perpendicular to the molecular plane (χmol

⊥ = −119 ×
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10−11 m3 mol−1) is about three times larger than the diamagnetic susceptibility
parallel to the molecular plane (χmol

‖ = −43.8 × 10−11 m3 mol−1) (Lue99). With
the proposed model, the total magnetic susceptibility cannot be described because
the influence of the core electrons is neglected. Moreover, the π-electrons are
not able to move perpendicular to the plane of the molecule. Therefore, the
orbital magnetic susceptibility in the plane of the benzene molecules is zero within
our model. However, the part of the magnetic susceptibility that stems from
the delocalization of the π-electrons—and this is the part that is important to
determine the degree of aromaticity—is extracted.

If only the ring-current effect in benzene were anisotropic, the magnetic sus-
ceptibility anisotropy,

∆χmol ≡ χmol
⊥ − χmol

‖

= 75.2× 10−11 m3 mol−1,
(4.77)

would be a good number to test the model. But according to Pople, the ring
current effect makes up only 30% of the anisotropy (Pop64; FP64). The rest is
caused by van Vleck paramagnetism. Other calculations have produced different
results (Dai64). The van Vleck paramagnetism is a local contribution that can
be captured by incremental schemes that ascribe a certain amount of the total
magnetic susceptibility to every atom or bond in the molecule.

This observation has led to the definition of the magnetic susceptibility exal-
tation as the difference between the measured susceptibility (averaged over all
orientations of the molecule) and the susceptibility calculated from incremental
schemes:

Λ ≡ χ̄mol −
(
∑

χmol
atom,i + nχmol

C=C

)

. (4.78)

Another method to determine the magnetic susceptibility exaltation is to take the
difference between the measured magnetic susceptibility of the aromatic molecule
and the susceptibility of molecules built from the same atoms but without cyclic
delocalization. The magnetic susceptibility exaltation should therefore be a good
measure for the delocalization of electrons in a molecule. In current magneto-
chemistry textbooks, the value

Λ = −17.2× 10−11 m3 mol−1 = −13.7 ppmcgs (4.79)

is found for the ring-current contribution to the total susceptibility in benzene
(Lue99). This value stems from the articles of Dauben (DWL68; DWL69). It
was calculated using the incremental schemes that were developed by Haberditzl,
Pacault, and Hoarau. We compare it in the following with the susceptibility of
our model.

The response current of benzene to an externally applied Aharonov-Bohm flux
would look like that displayed in Fig. 4.7. The data was obtained with the para-
meters in Eq. (4.75) and including the electron-electron interaction according to
the Ohno potential in Eq. (4.8). The diamagnetic response of benzene and the
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shape of the free energy in Fig. 4.8 is reminiscent of SC rings with a conventional
junction. The existence of a large almost linear regime around zero flux clarifies
why linear approximations were so successful in explaining the magnetic response.
The critical inductivity is (t = 2.64 eV)

Lc =
9

2t
≈ 1.70455/eV. (4.80)

Since this inductivity is very high, we expect the effect of the inductivity to be neg-
ligible in benzene rings. The slope of the curves at zero magnetic flux was determ-
ined as jL=0(φext) = −1.73 eV

π
φext, jL=0.05/eV (φext) = −1.68 eV

π
φext, jL=0.1/eV (φext) =

−1.63 eV
π

φext. It should be noted that the plots are not intended to be represent-
ative of the real ring current in benzene over the whole range of flux shown in
the figures. This would only be true if it were possible to create a thin flux tube
threading the molecule. In a homogeneous magnetic field the Zeeman interaction
of the electron spins with the magnetic field would make the oversimplified model
chosen invalid. However, in small fields the spins are not polarized in the benzene
molecule and the diagrams can be used to extract the ring-current effect in small
homogeneous magnetic fields.
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Figure 4.7: The PPP model on 6 sites with 3 up and 3 down electrons, t = 2.64 eV,
U = 8.9 eV, εr = 1.28, T = 0.025 eV, L = 0.0, 0.05/eV, 0.1/eV was
used to model benzene.

The molar magnetic susceptibility

χmol ≡ χ

ρ
Mr, (4.81)
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Figure 4.8: The free energy as a function of the magnetic flux for the system shown
in Fig. 4.7.

is the magnetic susceptibility divided by the density of the material and multiplied
by the molecular weight. In the framework of the model proposed above, the
magnetic susceptibility is equal to the magnetic susceptibility exaltation

Λ = χ̄mol =
µ0

3

jA2

φext
. (4.82)

With the values of j
φext
≈ −1.73 eV

π
and A = 3

√
3

2
(140 pm)2 we obtain

Λ = −13.3× 10−11 m3 mol−1, (4.83)

which agrees reasonably well with the value that was cited above [see Eq. (4.79)].

4.3.3 Systems with negative Drude weight

Systems with a negative Drude weight were first found by Stafford (SMS91) and
Fye (FMS+91). These systems are finite, half filled Hubbard rings with a multiple
of 4 lattice sites. As the ring reaches the thermodynamic limit, the Drude weight
becomes positive semidefinite. These rings are paramagnetic and correspond to
[4n]annulenes. The negative Drude weight is related to the paramagnetism of
these substances. However, we cannot expect to capture every property of the
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[4n]annulenes with the simple Hubbard model. Bond length alternation and the
long range Coulomb interaction counteract such an oversimplified description.

In this section we simply examine the new physical features that emerge from the
proposed model. There can be states with a permanent orbital magnetic moment
for these systems if the inductivity is tuned to values above the critical inductivity.
We have calculated a hysteresis loop centered around half a flux quantum of the
external field. There are two current states reached by entering the hysteresis
loop from above or below. This is shown in Fig. 4.9. For small fields and small
inductivities, the response is paramagnetic, and the overall characteristics are
reminiscent of a π-SQUID, although for large inductivities, the response current
of the 4-site system differs from that of a π-SQUID. The magnitude of the current
becomes smaller for larger inductivities. The critical inductivity is (t = 2.64 eV)

Lc =
2
√

2

t
≈ 1.07137/eV. (4.84)

States with a permanent orbital magnetic moment occur above the critical induct-
ivity. They evolve around half a flux quantum. The free energy at T = 0.01 eV is
plotted in Fig. 4.10. The current in a ring that is exposed to a magnetic field is
the negative first derivative of the free energy with respect to the external flux.
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Figure 4.9: Current for the Hubbard model on 4 sites with 2 up and 2 down elec-
trons, t = 2.64 eV, U = 8.9 eV, Vlm = 0, T = 0.01 eV, at inductivities
L = 0, 1

2
, 1, 3
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Figure 4.10: Here the free energy for the current curves shown in Fig. 4.9 is illus-
trated.

Although the electron interaction plays a subordinate role in the iterative scheme
for the fixed point of the current operator, it is important for the occurrence of
a permanent orbital magnetic moment in the 4-site system. We can ask which
energy eigenstate of the noninteracting system is the first to cross from a single
minimum with respect to the corresponding eigenvalue of the current operator to
two minima. For the noninteracting system, the eigenenergies are

Hκ = 2 Re
[

e−
i
N
L jκ Cκ

]

+
1

2
L(jκ)2. (4.85)

For a single-particle system the eigenvalues of the hopping operator Ck lie on a
circle in the complex plane. The radius of the circle is the hopping amplitude t.
The eigenvalues on the circle correspond to the points in momentum space. As the
external flux increases, they are rotated by an angle φext/N in negative direction.
All this is clear from Eq. (4.15). We are able to construct every possible eigenvalue
of the hopping operator of the many-particle system by successively filling up the
states in momentum space with electrons. Most of all, we are interested in the
properties of the state that crosses first from one minimum to two minima as the
inductivity is increased (see Fig. 4.11). The crossover takes place at Lc. This
state has to be the state that produces the highest amplitude of the exponential
term in Eq. (4.85). Occupying the single particle states −π

2
and π in momentum

space with two electrons each yields the highest real part of the hopping operator
in Eq. (4.85) [see Fig. 4.12]. Let us call this state |ψ〉. The state |ψ〉 is the
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Figure 4.11: The eigenenergies for the noninteracting model on four lattice sites
with two up and two down electrons with respect to the correspond-
ing eigenvalues of the current operator. The state with the highest
energy is nondegenerate and crosses first from one to two minima.
The inductivity chosen for the graph is L = 1.5/eV (U = 0, all other
parameters taken from Fig. 4.9). The eigenvalues of the current op-
erator will be adjusted by the fixed point method so as to minimize
the eigenenergies.

state with the highest energy for the noninteracting system. Hence we expect the
expectation value of the current at low temperatures not to exhibit a spontaneous
orbital magnetic moment. The interaction of the electrons plays a vital role in
mixing the state |ψ〉 with the ground state and thus adding a spontaneous orbital
magnetic moment to the ground state (see Fig. 4.13). The hysteresis loop of
the spontaneous orbital magnetic moment is seen to evolve for high interaction
strengths. There is no hysteresis for the noninteracting system.
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Figure 4.12: The eigenvalues of the hopping operator lie on a circle in the complex
plane. For four lattice sites, there are also four sites in momentum
space. The position of the points is influenced by the external flux
φ applied to the system. The largest positive eigenvalue is reached if
the points −π

2
and π are occupied with two electrons. Every possible

eigenvalue can be constructed from this sketch.
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Figure 4.13: The expectation value of the current at T = 0.01 eV for the Hubbard
model on four lattice sites with two up and two down electrons. The
inductivity is held constant at L = 1.5/eV. The on-site interaction
varies from U = 0 eV to U = 10 eV in steps of 2 eV.
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5 Conclusion

5.1 What has been achieved?

The work described in this thesis has demonstrated the existence of three different
types of quantum rings. There are quantum rings with diamagnetic, paramagnetic,
or spontaneous persistent currents. In all of these rings, the strength of the per-
sistent current is periodic in the number of flux quanta threading the ring. This
is a consequence of the Aharonov-Bohm effect. However, it should be noted once
again, that this result is strictly valid only for a flux tube threading the ring. In
a homogeneous field, the magnetic field penetrating the ring area leads to a non-
periodic contribution due to the Zeeman interaction of the electron spin with the
magnetic field, if there is a total spin component in the direction of the field. Also
the relativistic corrections, of which the spin-orbit coupling is most important,
potentially change the periodic behavior of the physical quantities in quantum
rings. A very important factor that influences the Aharonov-Bohm oscillations
in quantum rings in homogeneous magnetic fields is the width of the ring. The
leading-order corrections in terms of the ring width have been systematically de-
rived with the use of perturbation theory. In two- and three-dimensional rings, the
simple Peierls substitution, which multiplies the wave function by a phase factor
depending on the magnetic flux in the ring, breaks down. The Peierls substitution
describes, however, the leading order effect of a homogeneous magnetic field on
narrow rings.

Diamagnetic and paramagnetic ring currents have been known for many years, if
the connection between quantum rings and aromatic and antiaromatic molecules,
that was emphasized in this thesis, is accepted. A theoretical criterion to distin-
guish between these types of ring currents has been given. The Drude weight,
which was introduced as the singular part of the conductivity of systems in the
thermodynamic limit, can be positive or negative for finite systems. It is calcu-
lated as the second derivative of the ground-state energy with respect to the flux
in the ring. The current in a ring is the negative first derivative of the ground-
state energy with respect to the magnetic flux at zero temperature. Therefore, the
Drude weight is related to the first derivative of the current in the ring with respect
to the flux. A positive Drude weight indicates diamagnetic ring currents whereas
a negative Drude weight indicates paramagnetic ring currents. The existence of
paramagnetic ring currents is astonishing at first sight. However, paramagnetic
persistent currents, which enhance the magnetic field in the quantum rings, do
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not contradict Lenz’s law. Lenz’s law makes a prediction for ac currents induced
in alternating magnetic fields. In these fields, the ring currents have to counteract
their cause, which is the alternating magnetic field. In contrast, the persistent
currents in quantum rings are stemming from the Aharonov-Bohm effect that a
static magnetic vector potential has on the wave function of the electrons in the
ring.

Two different conditions under which the Drude weight can be negative have
been described in this thesis. The first one concerns the band structure of the
system under consideration. A system with a band structure where at a certain
point the curvature is negative and larger in its absolute value than the absolute
value of the curvature of the band at the other points in the Brillouin zone can
lead to a negative Drude weight, if that point is occupied by one or more elec-
trons. The second condition is concerned with the degeneracy of the ground state
of the system, which in connection with Umklapp scattering and level repulsion
due to the electron-electron interaction can lead to a negative Drude weight. Neg-
ative Drude weight and therefore paramagnetic currents have thus been found in
three different models in this thesis, namely the periodic Anderson model and the
Kronig-Penney model which fulfill the first condition, and the Hubbard model,
which fulfills the second condition. Of course, parameters could be adjusted to
find negative Drude weight due to fulfilling of the second condition in the periodic
Anderson model.

It was also pointed out in this thesis, that another criterion to distinguish
between diamagnetic and paramagnetic quantum rings is the sign of the Meissner
fraction. This quantity would probably be better suited at finite temperature. It
was also suggested to make use of the Meissner fraction in forthcoming investiga-
tions on the phase-coherence length. The Meissner fraction is different from zero
for systems whose energy depends on the magnetic flux threading them. Such
a dependency can only occur in systems with a phase-coherent electron motion.
Therefore, the Meissner fraction is correlated to the phase-coherence length, and
a definition of the phase-coherence length not resorting to the one-particle picture
of the electrons seems possible with the use of the Meissner fraction.

The Meissner fraction, which is also called the superfluid density, hints at an
analogy between quantum and superconducting rings. This analogy was explored
to find a novel effect in quantum rings: spontaneous persistent currents. These
have been measured in so-called π-SQUIDs. These are superconducting rings with
a junction which turns the phase of the superconducting wave function by π. Due
to this phase change, the free energy of the ring has two minima with respect to
the flux. At zero external flux, the system has a maximum of the free energy, but
there is no possibility to fall into one of the minima, because the system cannot
generate magnetic flux. The model that was developed to describe spontaneous
persistent currents in π-SQUIDs includes an inductivity. This inductivity enables
the persistent current flowing through the ring to generate the internal magnetic
flux needed to come closer to one of the minima in the free energy.

In complete analogy to this model, we have proposed a model including a feed-
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back term through which the persistent current in a quantum ring can generate
magnetic flux. Current and generated magnetic flux are coupled linearly by an
inductivity. The energy of the generated magnetic field is quadratic in the cur-
rent. However, the current is an operator. Within the framework of this model,
the magnetic field is approximated classically in the following sense: The eigen-
values of the current operator are inserted into the Maxwell equations in order
to obtain the magnetic field generated by the eigenstates of the current operator.
Afterwards, the additional phase generated by the additional flux is inserted into
the Schrödinger equation. Due to the linearity of the Maxwell equations, this pro-
cess should lead to the correct expectation values if the state of the system under
consideration is a superposition of different eigenstates of the current operator.

An iterative solution scheme for the model was developed, corresponding to
iteratively inserting the current operator from the Schrödinger equation into the
Maxwell equations and thus obtaining a change in the phase until a fixed point
is found. It was proved that the eigenvalues of the Hamiltonian are minimized
with respect to the eigenvalues of the current operator with this scheme. This
method is conducted in momentum space, where the Hamiltonian of the noninter-
acting system and the current operator are diagonal. Therefore, the method can
be applied to each eigenvalue separately. It has been shown, that the minimiza-
tion of the energy eigenvalues of the noninteracting Hamiltonian corresponds to a
minimization of the eigenvalues of the complete Hamiltonian.

For high inductivities, a state with a spontaneous orbital magnetic moment has
been found. This is a state where at zero external field there is a persistent current
flowing through the ring, generating a magnetic moment. It is not clear whether
the critical inductivities we estimated can be reached in molecules. However, it
should be possible to tune the inductivity of a ring of coupled quantum dots to
the required values.

The ring-current effect contributes to the anisotropy of the magnetic susceptib-
ility in benzene. It has been found that the inductivity of a benzene ring should
be almost negligible. This is due to the extremely small diameter (240pm) of the
molecule. However, for an exact determination of the inductivity of the π-system
of benzene, the part of the anisotropy of the magnetic susceptibility that is in-
duced by ring currents would have to be clearly separated from the part of the
anisotropy that stems from Van Vleck paramagnetism.

The proposed model has been applied to extract the ring current contribution to
the magnetic susceptibility in benzene. It should be possible to apply this method
to other substances and thus establish a theoretical criterion for aromaticity. The
advantage over the theoretical predictions of aromaticity from density-functional-
theory calculations is the full consideration of the Coulomb interaction. Of course,
here we have only considered relatively simple models with four parameters.
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5.2 What remains to be investigated?

• Further investigation should be undertaken to determine the inductivity of
quantum rings. A theory for calculating the value of the inductivity and
the parameters on which it depends has to be constructed. With the use of
such a theory, hints could be given to experimentalists, how quantum dots
should be coupled to build up quantum rings resulting in the largest possible
inductivity, and thus making it possible to measure spontaneous persistent
currents in quantum rings.

• The effect of the Zeeman interaction should be included in all calculations.
The Zeeman effect is a linear contribution to the energy of the quantum
ring. The exact-diagonalization calculations would have to be separately
conducted in the subspaces with different values of the total spin. We were
concerned mostly with systems with zero total spin. These calculations are
therefore also valid if the Landé factor of the electrons is switched on in the
low field limit of a homogeneous magnetic field. However, for strong fields,
the Zeeman interaction is also very important for systems, that show no
resulting spin component in weak fields.

• It should be tried to incorporate the solution of the model into the density-
matrix-renormalization formalism to reach larger system sizes. This should
be possible in momentum space for weak electron-electron interactions. It
is inevitable to work in momentum space, for the eigenstates of the current
operator are needed.

• Relativistic corrections should be examined more rigorously to estimate the
effect they have on quantum rings.

• We have neglected the quantization of the electro-magnetic field. The length
scale down to which the model is valid should be determined.
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A Units

The natural units (Tom99) in this thesis are defined by: ~ = c = e = kB = 1 (and
4πε0 = 1, whence µ0 = 4π). The remaining unit is chosen to be the energy 1eV.

Quantity Symbol natural units SI Explanation
Length l 1/eV 1.9732705× 10−7m = ct
Mass m 1 eV 1.7826627× 10−36kg = E/c2

Time t 1/eV 6.5821220× 10−16s = ~/E
Frequency f eV 1.5192669× 1015Hz = 1/t

Speed v 1 2.99792458× 108m/s c
!= 1

Momentum p 1 eV 5.3442883× 10−28kg m/s = cm
Force F 1 eV2 8.1194003× 10−13N = p/t
Power P 1 eV2 0.24341350mW = E/t

Energy E 1 eV 1.6021773× 10−19J != 1 eV
Charge q 1 1.6021773× 10−19C e

!= 1
Charge density ρ 1 eV3 20.852143C/m2 = e/l3

Current J 1 eV 2.4341349× 10−4A = e/t
Current density j 1 eV3 6.2513152× 109A/m2 = J/l2

Potential U 1 eV 1V = E/e
Electrical field E 1 eV2 5.0677289× 106V/m = U/l
Polarization P 1 eV2 4.114692× 10−6C/m2 = e/l2

Resistance R 1 4.1082357× 103Ω = U/J

Conductivity σ 1 eV 1.2335536× 103S/m = J
Ul

Capacitance C 1/eV 1.60217733× 10−19F = e/U

Magnetic flux φ 1 6.5821217× 10−16Wb = ~
e = φS.C.0

π
Magnetic induction B 1 eV2 1.6904124× 10−2T = φ/l2

Magnetization M 1 eV2 1.2335536× 103A/m = J/l
Inductance L 1/eV 2.07040908× 10−12H = φ/J
Temperature T 1 eV 1.1604447× 104K = E/kB
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B Continuum model for quantum rings

This appendix provides additional information needed for the calculations in Sec. 2. The
Schrödinger equation of a quantum ring with an infinite potential wall, threaded by a
flux tube has been examined in Sec. 2.2. The expansion of the radial ground-state wave
function in orders of the ring width was verified with the use of the Mathematica
notebook in Sec. 2.2.

The influence of a homogeneous magnetic field on a quantum ring has been expanded
in orders of the ring width. The usual formulas of perturbation theory have been applied
to the problem. In the course of the calculations, an integral over the product of the
azimuthal wave function and the first derivative of the azimuthal wave function appeared.
The value of this integral is calculated in Sec. B.2.

B.1 Asymptotic expansion of a two-dimensional ring

In the following, the Mathematica notebook for the evaluation of the asymptotic
expansion of the radial ground-state wave function and the lowest energy levels of a ring
threaded by a magnetic flux tube is shown.

Separation of the radius rn, the radial wave function psi, the

differential operator d and the energy eng into different orders

of the ring width eps.

In[1]:= rn = r0 + eps r;

psi[r_] =

1/Sqrt[eps] psi0[r] + Sqrt[eps] psi1[r] + eps^(3/2) psi2[r] +

eps^(5/2) psi3[r] + eps^(7/2) psi4[r] + eps^(9/2) psi5[r];

d = (r0^2/eps^2 psi’’[r] + 2r0 r/eps psi’’[r] + r0/eps psi’[r] +

r^2 psi’’[r] + r psi’[r]); dlinks =

Normal[Series[Collect[d, eps], {eps, 0, 3}]];

eng = em2/eps^2 + em1/eps + e0 + e1 eps + e2 eps^2 + e3 eps^3;

drechts = Normal[Series[-(eng rn^2 - ksi^2) psi[r], {eps, 0, 3}]];

The first equation that has to be solved is of the order -5/2 in eps.

In[6]:= gl1 =

Simplify[

Coefficient[dlinks, eps^(-5/2)] -

Coefficient[drechts, eps^(-5/2)] == 0]

Out[6]= r0 (em2 psi0[r] + psi0’’[r]) == 0

In[7]:= DSolve[%,psi0[r],r]
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B Continuum model for quantum rings

Out[7]= {{psi0[r]->C[1] Cos[Sqrt[em2] r] + C[2] Sin[Sqrt[em2] r]}}

Applying the boundary condition for the radial wave function leads to

the first order of the energy em2 and the first order of the wave

function psi0.

In[8]:= em2 = Pi^2;

psi0[r_] = Cos[Pi r]/Sqrt[Pi r0];

The scalar product is separated into its orders of epsilon as well.

The normalization of the proposed wave function psi0 is tested in

lowest order (with the symmetric scalar product).

In[10]:= symska[f_, g_] := 2 Pi Integrate[r0 f[r] g[r], {r, -1/2, +1/2}];

asymska[f_, g_] := 2Pi Integrate[r f[r] g[r], {r, -1/2, 1/2}];

symska[psi0[#] &, psi0[#] &]

Out[12]= 1

The second order equation leads to the second order energy and the

second order wave function.

In[13]:= dgl2 = FullSimplify[

Coefficient[dlinks , eps^(-3/2)] ==

Coefficient[drechts, eps^(-3/2)], {Element[r, Reals]

, eps > 0, r0 > 0}]

DSolve[dgl2, psi1[r], r];

psi11[r_] = psi1[r] /. Flatten[%];

gl211 = psi11[-1/2] == 0;

gl212 = psi11[+1/2] == 0;

rule211 = Solve[{gl211, gl212}, {em1, C[2], C[1]}];

psi12[r_] = psi11[r] /. Flatten[{rule211}];

em1 = em1 /. Flatten[{rule211}]

gl213 = eps asymska[psi0[#] &, psi0[#] &]

+ 2 symska[psi0[#] &, psi12[#] &] == 0;

rule213 = Solve[gl213, {C[1], C[2]}];

psi1[r_] =

FullSimplify[

psi12[r] /. Flatten[{rule213}],

{Element[r, Reals], eps > 0, r0 > 0}]

Out[13]= em1 r0^(3/2) Cos[Pi r] + Sqrt[Pi] r0^2

(Pi^2 psi1[r] + psi1"[r]),

== Pi Sqrt[r0] Sin[Pi r]

Out[20]= 0

Out[23]= -r Cos[Pi r]/(2 Sqrt[Pi] r0^(3/2))

The third order follows:

In[24]:= dgl3 = FullSimplify[

Coefficient[dlinks, eps^(-1/2)] ==

Coefficient[drechts, eps^(-1/2)],

{Element[r, Reals], eps > 0, r0 > 0}]

DSolve[dgl3, psi2[r], r];

psi21[r_] = psi2[r] /. Flatten[%];
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gl311 = psi21[-1/2] == 0;

gl312 = psi21[+1/2] == 0;

rule311 = Solve[{gl311, gl312}, {e0, C[2], C[1]}];

psi22[r_] = psi21[r] /. Flatten[{rule311}];

e0 = e0 /. Flatten[{rule311}]

gl313 = 2 asymska[psi0[#] &, psi1[#] &]

+ symska[psi1[#] &, psi1[#] &]

+ 2 symska[psi0[#] &, psi22[#] &] == 0;

rule313 = Solve[gl313, {C[1], C[2]}];

psi2[r_] =

FullSimplify[

psi22[r] /. Flatten[{rule313}],

{Element[r, Reals], eps > 0, r0 > 0}]

Out[24]= 1/Sqrt[r0](( - 1 - 2 ksi^2 + 2 e0 r0^2) Cos[Pi r]

+3 Pi r Sin[Pi r]

+ 2 Sqrt[Pi] r0^(5/2) (Pi^2 psi2[r]+psi2"[r])) == 0

Out[31]= -(1 - 4 ksi^2)/(4 r0^2)

Out[34]= 3 r^2 Cos[Pi r]/(8 Sqrt[Pi] r0^(5/2))

The fourth order is:

In[35]:= dgl4 = FullSimplify[

Coefficient[dlinks, eps^(1/2)] ==

Coefficient[drechts, eps^(1/2)], {Element[r, Reals], eps > 0, r0 > 0}]

DSolve[dgl4, psi3[r], r];

psi31[r_] = psi3[r] /. Flatten[%];

gl411 = psi31[-1/2] == 0;

gl412 = psi31[+1/2] == 0;

rule411 = Solve[{gl411, gl412}, {e1, C[2], C[1]}];

psi32[r_] =

FullSimplify[

psi31[r] /. Flatten[{rule411}],

{Element[r, Reals], eps > 0, r0 > 0}];

e1 = e1 /. Flatten[{rule411}]

gl413 = 2 asymska[psi0[#] &, psi2[#] &] + asymska[psi1[#] &, psi1[#] &] +

2 symska[psi0[#] &, psi32[#] &] + 2symska[psi1[#] &, psi2[#] &] == 0;

rule413 = Solve[gl413, {C[1], C[2]}];

psi3[r_] =

FullSimplify[

psi32[r] /. Flatten[{rule413}], {Element[r, Reals], eps > 0, r0 > 0}]

Out[35]= ((11+16 ksi^2) r Cos[Pi r]-15 Pi r^2 Sin[Pi r]+

8 Sqrt[Pi] r^(7/2) ((-2 r (-2+8 ksi^2 +5 Pi^2 r^2)

Cos[Pi r]-(-1+4 ksi^2) Pi (-1+4 r^2) Sin[Pi r])/(32 Sqrt[Pi] r0^(7/2))+

(-60 Pi^2 r Cos[Pi r]+

2 Pi^2 r (-2+8 ksi^2 + 5 Pi^2 r^2) Cos[Pi r]+

4 Pi (-2+8 ksi^2+15 Pi^2 r ^2) Sin[Pi r]-

(-1+4ksi^2) Pi

(16 Pi r Cos[Pi r]+ 8 Sin[Pi r]-

Pi^2 (-1+4 r^2) Sin[Pi r]))/(32 Pi^(5/2) r^(7/2))))/Sqrt[r0]==0

Out[42]= 0

Out[45]= (-2 r (-2+8 ksi^2+5 Pi^2 r^2) Cos[Pi r]-

(-1+4 ksi^2) Pi (-1+4 r^2) Sin[Pi r])/(32 Pi^(5/2) r0^(7/2))

The fourth order correction to a Cos[Pi r]/Sqrt[Pi eps (r0+eps r)] function is:

In[46]:= FullSimplify[psi0[r] eps^(-1/2)+psi1[r] eps^(1/2)+psi2[r] eps^(3/2)+
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psi3[r] eps^(5/2)-

Normal[Series[Cos[Pi r]/Sqrt[Pi eps(r0 + eps r)], {eps, 0, 3}]]]

Out[46]= -(eps^(5/2) (-1+4 ksi^2) (4 r Cos[Pi r]+Pi (-1+4r^2) Sin[Pi r]))/

(32 Pi^(5/2) r0^(7/2))

B.2 Perturbation theory

The problem of a quantum ring in a homogeneous magnetic field was expanded in terms
of a quantum ring threaded by a flux tube in Sec. 2.3. The perturbation expansion is the
standard perturbation expansion. The integral on p. 115 over the complex conjugated
wave function and the first derivative of the wave function plays an important role in this
expansion. The result has been used in Eq. 2.65. The first derivative of the azimuthal
wave function is discontinuous at the locations of the δ-functions in the potential. In fact,
there are δ-functions appearing in the first derivative of the wave function. Integrating
over a product of a discontinuous function and a δ-function leads to the result

∞
∫

−∞

δ(x)f(x) dx = lim
ε→0

1
2

[f(−ε) + f(ε)] . (B.1)

We use the definition ξ = ξν on the next page.
The last four terms in the penultimate equation on the next page can be analytically

shown to vanish with the use of the continuity of the absolute value of the wave function
at ϕ = 0.
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In this appendix, additional information on the periodic Anderson model is supplied.
The first section shows a table of the operators that are important for calculating the
Drude weight. These are the Hamiltonian, the paramagnetic current operator and the
operator of the kinetic energy. These operators are most useful in the space of the
quasi-particles. To get these operators, they are shown in real space (R), transformed
to momentum space (K) and then, after a Bogoliubov transformation, obtained in the
space of the quasi-particles (B). Only the results are given in the table.

A chapter about particle-hole symmetry shows how calculations for the symmetric
periodic Anderson model for less than half filling could be mapped on the model for
more than half filling. Although we have frequently described the lower band of the
periodic Anderson model as being asymmetric (and thus leading to a negative Drude
weight), the two bands together are in fact particle-hole symmetric.

In chapter 3, we have studied the noninteracting periodic Anderson model. To gain
insight how the electron-electron coupling in the f -orbitals influences the behavior of
the electrons in the model, we added a short section about the Hartree-Fock approxi-
mation in the antiferromagnetic phase. There is strong evidence that the ground state
of the symmetric periodic Anderson model at half filling in one-dimension with local
hybridization is antiferromagnetic.
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C.2 Particle-hole symmetry in the PAM

To gain deeper insight into the physics and also to simplify calculations, conserved
quantities of the periodic Anderson model have to be found. There are several known
symmetries of the one-dimensional Hubbard model (similar to the PAM), e.g., its spin
rotational invariance, making the total spin S and its z-component Sz good quantum
numbers. In particular, particle-hole transformations turned out to be very helpful in
finding useful relations between the filling and the chemical potential of all types of
lattices. Special transformations are constructed to deal with bipartite lattices.

To apply those transformations to the periodic Anderson model, it is natural to use
the grand canonical Hamiltonian:

KPAM =− t
∑

(lm),σ

d†lσ dmσ +HV

+ Uf
∑

l

nfl↑ nfl↓

− µd
∑

l,σ

ndlσ −µf
∑

l,σ

nflσ,

(C.1)

where HV is the local hybridization

−V
∑

l,σ

(

d†lσ f lσ + f†lσ dlσ
)

, (C.2)

or the nearest-neighbor hybridization

−V
∑

(lm),σ

(

d†lσ fmσ + f†mσ dlσ
)

. (C.3)

Independent chemical potentials µd and µf of the d and f sites are assumed in order to
incorporate both, general fillings and general on-site energies.

For a lattice with a bipartite structure, the electrons can be transformed to holes and
vice versa. With nearest-neighbor hybridization we use the transformation

d†lσ → (−1)|l| dlσ f†lσ → (−1)|l| f lσ

dlσ → (−1)|l| d†lσ f lσ → (−1)|l| f†lσ, (C.4)

where |l| =
∑d

`=1 |l`|. This ensures different signs on the different sub-lattices. This
transformation is canonical, for it leaves the canonical anticommutator relations (3.37)
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unchanged. Inserting this transformation into the periodic Anderson model yields:

K̃PAM = −t
∑

(lm),σ

d†lσ dmσ −V
∑

(lm),σ

(

f†mσ dlσ + d†lσ fmσ
)

+ Uf
∑

l

(

1− nfl↑
)(

1− nfl↓
)

− µd
∑

l,σ

(1− ndlσ)− µf
∑

l,σ

(1− nflσ)

= −t
∑

(lm),σ

d†lσ dmσ −V
∑

(lm),σ

(

d†lσ fmσ + f†mσ dlσ
)

+ Uf
∑

l

nfl↑ nfl↓−(Uf − µf )
∑

l,σ

nflσ −(−µd)
∑

l,σ

ndlσ

+ L
(

Uf − 2(µf + µd)
)

= Ht +HV +HUf +Hµ̃f=Uf−µf +Hµ̃d=−µf + L
(

Uf − 2(µf + µd)
)

.

(C.5)

At half filling, the original and the transformed grand canonical Hamiltonians must be
identical: KPAM

!= K̃PAM. By comparing them, we find:

µf =
Uf

2
,

µd = 0.
(C.6)

By shifting the chemical potential of the f -sites by Uf/2, thus writing the interaction
in a particle-hole symmetric manner, both chemical potentials are zero.

For local hybridization, the transformation has to be chosen according to

d†iσ → (−1)|l| dlσ f†lσ → −(−1)|l| f lσ

dlσ → (−1)|l| d†lσ f lσ → −(−1)|l| f†lσ . (C.7)

This transformation is also canonical and fulfills (3.37). The terms in (C.5) that con-
tain a creator and an annihilator of f -electrons through nflσ are unchanged by the two
supplementary signs. The terms that describe the hybridization contain a minus sign
for next neighbor hybridization, because the operators for d- and f -electrons act on
different sub-lattices. This effect is compensated by the two additional signs in the
transformation.

The particle density n is transformed into the hole density ñ, thus, for the total density
on a lattice site we get:

ñ =
1
N

∑

l,σ

(〈

d̃†lσd̃lσ
〉

+
〈

f̃†lσ f̃ lσ
〉)

=
1
N

∑

l,σ

(

2−
〈

d†lσ dlσ
〉

−
〈

f†lσ f lσ
〉)

=
1
N

(4N − 〈n〉)

= 4− n.

(C.8)

This symmetry allows us to restrict ourselves to half filling or less.
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C.3 Hartree-Fock study of the PAM

The periodic Anderson model is used to describe heavy-fermion materials. These mater-
ials exhibit different ground states: antiferromagnetic, superconducting, paramagnetic,
or semiconducting. Therefore, it is useful to investigate the ground state of the Anderson
lattice. Studies of this model have shown contradictory results regarding the magnetism
of the ground state. Paramagnetic (Ris92), ferromagnetic (REH92) and antiferromag-
netic (MW93) ground states have been found in the model with local hybridization
depending on the approximation method being applied. The antiferromagnetic ground
state for the symmetric case (εf = 0) at half filling was confirmed by density-matrix
renormalization group studies of Guerrero and Noack (GN96). There are two rigor-
ous results for the half-filled symmetric periodic Anderson model: The ground state of
the symmetric periodic Anderson model in any dimension at half filling for any coup-
ling strength is unique and forms a total spin singlet [S = 0] (UTS92), and there is a
short-range antiferromagnetic order in the ground state (Tia94).

Therefore, we study the periodic Anderson model within the Hartree-Fock approxima-
tion in the antiferromagnetic phase. Weak Coulomb interaction of the f -electrons is thus
included. In order to implement this approximation, the Hamiltonian of the interaction,

HU = Uf
∑

l

nfl↑ nfl↓, (C.9)

is replaced by a one-particle operator,

HU = Uf
∑

l

(〈

nfl↑
〉

nfl↓+
〈

nfl↓
〉

nfl↑−
〈

nfl↑
〉〈

nfl↓
〉)

. (C.10)

In the paramagnetic phase, this leads to an effective f -level:

ε̃flσ = εf + U
〈

nfl,−σ

〉

. (C.11)

In a antiferromagnet on a bipartite lattice, the magnetization on the two different sub-
lattices points in opposite directions. Accordingly, we set [see, e.g., (vD93)]

〈

nfl↑−nfl↓
〉

= ml = (−1)|l|m 6= 0, (C.12)

which—at the filling n =
〈

nf
〉

—results in

〈

nfl↑
〉

= n
2 [1 + (−1)|l|m]

〈

nfl↓
〉

= n
2 [1− (−1)|l|m]











〈

nflσ
〉

=
n

2
[1 + σ(−1)|l|m]. (C.13)

The terms that contribute to the Hamiltonian within the Hartree-Fock approximation
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are:

−Uf
∑

l

〈

nfl↑
〉〈

nfl↓
〉

= −Ufn2
∑

l

1
4

[1 + (−1)|l|m][1− (−1)|l|m]

= −Ufn2
∑

l

1
4

[1− (−1)2|l|m2]

= −U
fn2

4

∑

l

(1−m2)

= −
UfNfn

2

4
(1−m2)

(C.14)

and

Uf
∑

l

(〈

nfl↓
〉

nfl↑+
〈

nfl↑
〉

nfl↓
)

= Ufn
∑

l

(

1
2

[1− (−1)|l|m] nfl↑+
1
2

[1 + (−1)|l|m] nfl↓

)

= Ufn
∑

l

[

1
2

(nfl↑+ nfl↓)−
1
2

(−1)|l|m nfl↑+
1
2

(−1)|l|m nfl↓

]

=
UfNfn

2
+
Ufnm

2

∑

l,σ

(−σ)(−1)|l| nflσ

=
UfNfn

2
− Ufnm

2

∑

l,σ

σ(−1)|l| nflσ .

(C.15)

For the symmetric periodic Anderson model (εf = 0) at the filling
〈

nf
〉

= n, the
Hamiltonian is

HHF
PAM =− t

∑

(lm),σ

d†lσ dmσ −V
∑

(lm),σ

(

d†lσ fmσ + f†mσ dlσ
)

− Ufnm

2

∑

l,σ

σ(−1)|l| nflσ +
UfNfn

2

−
UfNfn

2

4
(1−m2)− µ

∑

l,σ

(

ndlσ + nflσ
)

.

(C.16)

The third term has to be Fourier transformed. To this end, we insert the Fourier-
transformed creators and annihilators into the interaction term in the Hamiltonian and
obtain, replacing (−1)|l| by eixlQ, with Q = (π, π, . . . ):

−
∑

σ

Ufnmσ

2Nd

∑

k,k′

∑

l

eixlQe−i(k−k′)xl f†kσ fk′σ

=−
∑

σ

Ufnmσ

2

∑

k,k′

δk′,k−Q f†kσ fk′σ

=− Ufnm

2

∑

k,σ

σ f†kσ fk−Qσ .

(C.17)
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The sum over the momenta can be split up into a sum over the momenta with εk > 0
and εk < 0. After this splitting procedure, the Hamiltonian is

HHF
PAM =

∑

k,σ

εk>0

[

εk

(

ndkσ −ndk−Qσ

)

+ Vk

(

d†kσ fkσ + f†kσ dkσ −d†k−Qσ fk−Qσ − f†k−Qσ dk−Qσ

)

− Ufnmσ
(

f†kσ fk−Qσ + f†k−Qσ fkσ

)

− µ
(

ndkσ + ndk−Qσ + nfkσ + nfk−Qσ

) ]

+
UfNfn

2
−
UfNfn

2

4
(1−m2)− µ(Nd +Nf ).

(C.18)

This Hamiltonian can be written in a more compact form with the use of the matrix

Mkσ =









εk Vk 0 0
Vk 0 0 −Ufnmσ
0 0 −εk −Vk

0 −Ufnmσ −Vk 0









(C.19)

and the vector

ψkσ =









dkσ

fkσ

dk−Qσ

fk−Qσ









. (C.20)

The result is

HHF
PAM =

∑

k,σ

εk>0

ψ†kσMkσψkσ +
UfNfn

2
−
UfNfn

2

4
(1−m2)− µ(Nd +Nf ). (C.21)

The real symmetric matrixMkσ is diagonalizable. For the thermodynamic behavior, the
eigenvalues are most important. With the definitions

a = ε2k + (nmUf )2 + 2V 2
k ,

b =
√

[

ε2k − (mnUf )2
]2 + 4

[

ε2k + (mnUf )2
]

V 2
k ,

(C.22)

the eigenvalues are

(+λ+) =

√

1
2

(a+ b),

(−λ+) = −
√

1
2

(a+ b),

(+λ−) =

√

1
2

(a− b),

(−λ−) = −
√

1
2

(a− b).

(C.23)
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With the band index τ = ±, the four eigenvalues can be combined to two energy bands
[

(λ±) and (−λ±)→ E±k
]

:

Eτk = τ sgn(εk)

√

1
2

(a+ τb). (C.24)

The obtained band structure is shown in Fig. C.1 for local hybridization and in Fig. C.2
for nearest-neighbor hybridization.
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Figure C.1: Band structure of the one-dimensional symmetric periodic Anderson
model with local hybridization in the antiferromagnetic phase, U f =
0.5 and V = 0.5. The lowering of the ground state energy for the
half-filled model due to the magnetization m is visualized by plotting
the band structure for m = 1 and m = 0.

With the information provided above, the symmetry of the ground state can be stud-
ied. The ground-state energy needs to be expressed in terms of the magnetization m.
Minimizing the ground-state energy with respect to the magnetization will show that
for nearest-neighbor hybridization the ground state of the periodic Anderson model is
antiferromagnetic within the Hartree-Fock approximation for weak Coulomb repulsion
Uf . A critical interaction strength Ufc (V ) is found below which the ground state is an-
tiferromagnetic and above which the ground state becomes paramagnetic. In contrast,
the model with local hybridization exhibits paramagnetism for weak interaction and
antiferromagnetism for strong interaction (GKKR96; GN96).
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Figure C.2: Band structure of the one-dimensional symmetric periodic Anderson
model with nearest-neighbor hybridization in the antiferromagnetic
phase, U f = 0.5, and V = 0.5.
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