Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-3228
Authors: Elmenofy, Wael Hassan Ali
Title: Analysing the possible influence of transposon TCl4.7 insertion on the function of the genome of Cydia pomonella granulovirus
Online publication date: 23-Dec-2008
Year of first publication: 2008
Language: english
Abstract: CpGV-MCp5 is a natural mutant of the Cydia pomonella Granulovirus (Mexican isolate) (CpGV-M) that harbors an insect host transposon termed TCl4.7 in its genome. TCl4.7 is located between the open reading frames Cp15 and Cp16 and separates two homologous regions hr3 and hr4, which have been recently shown to be origins of replication of CpGV-M. The MCp5 has a significant replication disadvantage in the presence of the wild-type CpGV-M. In this study, the possible effects of TCl4.7 transposon insertion on the genome function of its insertion site has been analysed. The role of Cp15 and Cp16 in the context of the virus infection cycle was examined by generating a CpGV-Bacmid (CpBAC) and Cp15 knock-out (CpBACCp15KO) and Cp16 knock-out (CpBACCp16KO) mutants. The mutant CpBACCp15KO was not able to replicate in CM larvae suggesting that Cp15 was essential for virus replication. In contrast, the mutant CpBACCp16KO infected CM larvae and produced viable occlusion bodies (OBs) demonstrating that Cp16 is a non-essential gene for virus in vivo infection of C. pomonella. The temporal transcription of Cp15 and Cp16, as well as of Cp31 (F protein) as a control, was analysed using RT-PCR and quantitative real-time PCR. It suggested a general delay or reduction of gene transcription of MCp5 compared to the parental CpGV-M. Western blot analyses using anti-Cp15 and anti-Cp16 polyclonal antibodies, however, did not show any immuno-reactive response. Thus, a direct influence of TCl4.7 on the expression of Cp15 and Cp16 could not be substantiated. To investigate whether the interruption of hr3 and hr4 palindromes affects the virus replication, two mutant bacmids with a deletion of hr3 and hr4 (CpBAChr3/hr4-KO) and another with an insertion of a Kanamycin resistance cassette between hr3 and hr4 (CpBAChr3-kan-hr4) were generated. Both mutant bacmids replicated and produced infectious virus OBs, which did not significantly differ in their median lethal concentration (LC50) and median survival time (ST50) compared to the parental CpBAC. Interestingly, the mutant CpBAChr3-kan-hr4 was very effectively out-competed by parental CpBAC, when CM larvae were co-infected with known ratios of OBs of CpBAC and the mutant CpBAChr3-kan-hr4. These observations suggested a functional co-operation between hr3 and hr4 which was interrupted by the KanR insertion in CpBAChr3-kan-hr4 and possibly by TCl4.7 transposon insertion in the mutant MCp5. This hypothesis may explain the observed replication disadvantage of the mutants MCp5 and CpBAChr3-kan-hr4 in the presence of the parental viruses CpGV-M and CpBAC, respectively.
DDC: 500 Naturwissenschaften
500 Natural sciences and mathematics
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 10 Biologie
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-3228
URN: urn:nbn:de:hebis:77-18387
Version: Original work
Publication type: Dissertation
License: In Copyright
Information on rights of use: https://rightsstatements.org/vocab/InC/1.0/
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
1838.pdf5.08 MBAdobe PDFView/Open