Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-2836
Authors: Kolbe, Niklas
Title: A tumor invasion model for heterogeneous cancer cell populations : mathematical analysis and numerical methods
Online publication date: 25-Jan-2018
Language: english
Abstract: Tumor invasion of tissue is the first step in cancer metastasis and thus a process that is co-responsible for most deaths in cancer patients. In this thesis we consider two macroscopic tumor invasion models from the literature and derive a third one that takes the presence of recently discovered stem-like cells within tumors into account. The modeling considers microscopic events on the cancer cell receptors and tissue remodeling by fibroblast cells. In addition to the model derivation, we prove global in time existence of classical solutions in two space dimensions for a slightly simplified version of the new model. We show in numerical experiments in one and two space dimensions that the new model can qualitatively reproduce the biomedical understanding of the invasion by the two considered types of cancer cells. Since Keller-Segel type models of tumor invasion such as our new model are associated with very rich dynamics, their numerical simulation requires elaborate methods. These constitute another core theme of this thesis. Here we design and study, in particular, combined finite volumes/finite differences with implicit-explicit time discretization in the first place, adaptive mesh refinement methods in the second place and a new mass-transport scheme in the third place.
Die Invasion von Tumor benachbartem Gewebe durch Krebszellen ist der erste Schritt bei der Entstehung von Metastasen. Somit ist dieser Prozess mitverantwortlich für die meisten Todesfälle unter Krebspatienten. In dieser Arbeit betrachten wir zwei makroskopische Modelle der Tumorinvasion aus der Literatur und wir leiten ein drittes her, welches insbesondere die erst kürzlich entdeckten Stammzellen-ähnlichen Zellen innerhalb von Tumoren miteinbezieht. Bei der Modellierung berücksichtigen wir die Remodellierung des Gewebes durch Fibroblasten und Prozesse an den Zellrezeptoren. Neben der Modellherleitung zeigen wir die globale Existenz und Eindeutigkeit von klassischen Lösungen in zwei Raumdimensionen in einem leicht vereinfachtem Modell. Wir demonstrieren darüber hinaus durch numerische Experimente in einer und zwei Raumdimensionen, dass das neue Modell die biomedizinische Auffassung des Invasionsprozesses durch die beiden betrachteten Krebszellentypen qualitativ reproduzieren kann. Keller-Segel-artige Tumorinvasionsmodelle, zu denen auch unser neues Modell gehört, gehen mit einer komplexen Dynamik der zugehörigen Lösungen einher. Deshalb benötigt man für die numerische Approximation geeignete Verfahren, welche einen weiteren Schwerpunkt dieser Arbeit darstellen. Wir entwickeln und vergleichen hier im Speziellen kombinierte finite Volumen/finite Differenzen mit implizit-expliziter Zeitdiskretisierung, adaptive Gitterverfeinerungsverfahren und eine neue Massetransportmethode.
DDC: 510 Mathematik
510 Mathematics
Institution: Johannes Gutenberg-Universität Mainz
Department: MaxPlanck GraduateCenter
FB 08 Physik, Mathematik u. Informatik
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-2836
URN: urn:nbn:de:hebis:77-diss-1000018420
Version: Original work
Publication type: Dissertation
License: In Copyright
Information on rights of use: https://rightsstatements.org/vocab/InC/1.0/
Extent: xii, 177 Seiten
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
100001842.pdf8.42 MBAdobe PDFView/Open