Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-248
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCasiraghi, Arianna-
dc.contributor.authorCorte-León, Héctor-
dc.contributor.authorVafaee, Mehran-
dc.contributor.authorGarcia-Sanchez, Felipe-
dc.contributor.authorDurin, Gianfranco-
dc.contributor.authorPasquale, Massimo-
dc.contributor.authorJakob, Gerhard-
dc.contributor.authorKläui, Mathias-
dc.contributor.authorKazakova, Olga-
dc.date.accessioned2020-01-14T10:43:53Z-
dc.date.available2020-01-14T11:43:53Z-
dc.date.issued2019-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/250-
dc.description.abstractMagnetic skyrmions are topologically protected spin textures, stabilised in systems with strong Dzyaloshinskii-Moriya interaction (DMI). Several studies have shown that electrical currents can move skyrmions efficiently through spin-orbit torques. While promising for technological applications, current-driven skyrmion motion is intrinsically collective and accompanied by undesired heating effects. Here we demonstrate a new approach to control individual skyrmion positions precisely, which relies on the magnetic interaction between sample and a magnetic force microscopy (MFM) probe. We investigate perpendicularly magnetised X/CoFeB/MgO multilayers, where for X = W or Pt the DMI is sufficiently strong to allow for skyrmion nucleation in an applied field. We show that these skyrmions can be manipulated individually through the local field gradient generated by the scanning MFM probe with an unprecedented level of accuracy. Furthermore, we show that the probe stray field can assist skyrmion nucleation. Our proof-of-concepts results pave the way towards achieving current-free skyrmion control.en_GB
dc.language.isoeng-
dc.rightsInCopyrightde_DE
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/-
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleIndividual skyrmion manipulation by local magnetic field gradientsen_GB
dc.typeZeitschriftenaufsatzde_DE
dc.identifier.urnurn:nbn:de:hebis:77-publ-594977-
dc.identifier.doihttp://doi.org/10.25358/openscience-248-
jgu.type.dinitypearticle-
jgu.type.versionAccepted versionen_GB
jgu.type.resourceText-
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatik-
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleCommunications Physics-
jgu.journal.volume2-
jgu.pages.alternativeArt. 145-
jgu.publisher.year2019-
jgu.publisher.nameSpringer Nature-
jgu.publisher.placeLondon-
jgu.publisher.urihttp://dx.doi.org/10.1038/s42005-019-0242-5-
jgu.publisher.issn2399-3650-
jgu.organisation.placeMainz-
jgu.subject.ddccode530-
opus.date.accessioned2020-01-14T10:43:53Z-
opus.date.modified2020-02-03T10:36:41Z-
opus.date.available2020-01-14T11:43:53-
opus.subject.dfgcode00-000-
opus.organisation.stringFB 08: Physik, Mathematik und Informatik: Institut für Physikde_DE
opus.identifier.opusid59497-
opus.institute.number0801-
opus.metadataonlyfalse-
opus.type.contenttypeForschungsberichtde_DE
opus.type.contenttypeResearch Reporten_GB
opus.affiliatedJakob, Gerhard-
opus.affiliatedKläui, Mathias-
jgu.publisher.doi10.1038/s42005-019-0242-5
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
59497.pdf7.5 MBAdobe PDFView/Open