Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-2323
Authors: Weyer, Holger
Title: Der Renormierungsgruppen-Fluß der konform-reduzierten Quantengravitation
Online publication date: 19-Jan-2011
Year of first publication: 2011
Language: german
Abstract: Wir analysieren die Rolle von "Hintergrundunabhängigkeit" im Zugang der effektiven Mittelwertwirkung zur Quantengravitation. Wenn der nicht-störungstheoretische Renormierungsgruppen-(RG)-Fluß "hintergrundunabhängig" ist, muß die Vergröberung durch eine nicht spezifizierte, variable Metrik definiert werden. Die Forderung nach "Hintergrundunabhängigkeit" in der Quantengravitation führt dazu, daß die funktionale RG-Gleichung von zusätzlichen Feldern abhängt; dadurch unterscheidet sich der RG-Fluß in der Quantengravitation deutlich von dem RG-Fluß einer gewöhnlichen Quantentheorie, deren Moden-Cutoff von einer starren Metrik abhängt. Beispielsweise kann in der "hintergrundunabhängigen" Theorie ein Nicht-Gauß'scher Fixpunkt existieren, obwohl die entsprechende gewöhnliche Quantentheorie keinen solchen entwickelt. Wir untersuchen die Bedeutung dieses universellen, rein kinematischen Effektes, indem wir den RG-Fluß der Quanten-Einstein-Gravitation (QEG) in einem "konform-reduzierten" Zusammenhang untersuchen, in dem wir nur den konformen Faktor der Metrik quantisieren. Alle anderen Freiheitsgrade der Metrik werden vernachlässigt. Die konforme Reduktion der Einstein-Hilbert-Trunkierung zeigt exakt dieselben qualitativen Eigenschaften wie in der vollen Einstein- Hilbert-Trunkierung. Insbesondere besitzt sie einen Nicht-Gauß'schen Fixpunkt, der notwendig ist, damit die Gravitation asymptotisch sicher ist. Ohne diese zusätzlichen Feldabhängigkeiten ist der RG-Fluß dieser Trunkierung der einer gewöhnlichen $\phi^4$-Theorie. Die lokale Potentialnäherung für den konformen Faktor verallgemeinert den RG-Fluß in der Quantengravitation auf einen unendlich-dimensionalen Theorienraum. Auch hier finden wir sowohl einen Gauß'schen als auch einen Nicht-Gauß'schen Fixpunkt, was weitere Hinweise dafür liefert, daß die Quantengravitation asymptotisch sicher ist. Das Analogon der Metrik-Invarianten, die proportional zur dritten Potenz der Krümmung ist und die die störungstheoretische Renormierbarkeit zerstört, ist unproblematisch für die asymptotische Sicherheit der konform-reduzierten Theorie. Wir berechnen die Skalenfelder und -imensionen der beiden Fixpunkte explizit und diskutieren mögliche Einflüsse auf die Vorhersagekraft der Theorie. Da der RG-Fluß von der Topologie der zugrundeliegenden Raumzeit abhängt, diskutieren wir sowohl den flachen Raum als auch die Sphäre. Wir lösen die Flußgleichung für das Potential numerisch und erhalten Beispiele für RG-Trajektorien, die innerhalb der Ultraviolett-kritischen Mannigfaltigkeit des Nicht-Gauß'schen Fixpunktes liegen. Die Quantentheorien, die durch einige solcher Trajektorien definiert sind, zeigen einen Phasenübergang von der bekannten (Niederenergie-) Phase der Gravitation mit spontan gebrochener Diffeomorphismus-Invarianz zu einer neuen Phase von ungebrochener Diffeomorphismus-Invarianz. Diese Hochenergie-Phase ist durch einen verschwindenden Metrik-Erwartungswert charakterisiert.
We analyze the conceptual role of background independence in the application of the effective average action to quantum gravity. Insisting on a background independent nonperturbative renormalization group (RG) flow the coarse graining operation must be defined in terms of an unspecified variable metric since no rigid metric of a fixed background spacetime is available. This leads to an extra field dependence in the functional RG equation and a significantly different RG flow in comparison to the standard flow equation with a rigid metric in the mode cutoff. The background independent RG flow can possess a non-Gaussian fixed point, for instance, even though the corresponding standard one does not. We demonstrate the importance of this universal, essentially kinematical effect by computing the RG flow of Quantum Einstein Gravity (QEG) in the "conformally reduced" theory which discards all degrees of freedom contained in the metric except the conformal one. The conformally reduced Einstein-Hilbert approximation has exactly the same qualitative properties as in the full Einstein-Hilbert truncation. In particular it possesses the non-Gaussian fixed point which is necessary for asymptotic safety. Without the extra field dependence the resulting RG flow is that of a simple $\phi^4$-theory. We employ the Local Potential Approximation for the conformal factor to generalize the RG flow on an infinite dimensional theory space. Again we find a Gaussian as well as a non-Gaussian fixed point which provides further evidence for the viability of the asymptotic safety scenario. The analog of the invariant cubic in the curvature which spoils perturbative renormalizability is seen to be unproblematic for the asymptotic safety of the conformally reduced theory. The scaling fields and dimensions of both fixed points are obtained explicitly and possible implications for the predictivity of the theory are discussed. Since the RG flow depends on the topology of the underlying spacetime we consider the flat space as well as the sphere. Solving the flow equation for the potential numerically we obtain examples of renormalization group trajectories inside the ultraviolet critical surface of the non-Gaussian fixed point. The quantum theories based upon some of them show a phase transition from the familiar (low energy) phase of gravity with spontaneously broken diffeomorphism invariance to a new phase of unbroken diffeomorphism invariance; this high energy phase is characterized by a vanishing expectation value of the metric.
DDC: 530 Physik
530 Physics
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 08 Physik, Mathematik u. Informatik
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-2323
URN: urn:nbn:de:hebis:77-25644
Version: Original work
Publication type: Dissertation
License: In Copyright
Information on rights of use: https://rightsstatements.org/vocab/InC/1.0/
Extent: 190 S.
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
2564.pdf13.93 MBAdobe PDFView/Open