Über die Existenz invarianter Tori in Hamiltonschen Systemen, die bis auf eine endlich oft differenzierbare Störung analytisch und integrabel sind

Loading...
Thumbnail Image

Date issued

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Reuse License

Description of rights: InC-1.0
Item type: Item , DissertationAccess status: Open Access ,

Abstract

Es wird die Existenz invarianter Tori in Hamiltonschen Systemen bewiesen, die bis auf eine 2n-mal stetig differenzierbare Störung analytisch und integrabel sind, wobei n die Anzahl der Freiheitsgrade bezeichnet. Dabei wird vorausgesetzt, dass die Stetigkeitsmodule der 2n-ten partiellen Ableitungen der Störung einer Endlichkeitsbedingung (Integralbedingung) genügen, welche die Hölderbedingung verallgemeinert. Bisher konnte die Existenz invarianter Tori nur unter der Voraussetzung bewiesen werden, dass die 2n-ten Ableitungen der Störung hölderstetig sind.

Description

Keywords

Citation

Relationships

Endorsement

Review

Supplemented By

Referenced By