Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://doi.org/10.25358/openscience-1738
Autoren: Hussein, Amru
Titel: Spectral theory of differential operators on finite metric graphs and on bounded domains
Online-Publikationsdatum: 3-Sep-2013
Erscheinungsdatum: 2013
Sprache des Dokuments: Englisch
Zusammenfassung/Abstract: Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im Ersten werden endliche, nicht notwendigerweise kompakte, metrische Graphen und die Hilberträume von quadratintegrierbaren Funktionen auf diesen betrachtet. Alle quasi-m-akkretiven Laplaceoperatoren auf solchen Graphen werden charakterisiert, und Abschätzungen an die negativen Eigenwerte selbstadjungierter Laplaceoperatoren werden hergeleitet. Weiterhin wird die Wohlgestelltheit eines gemischten Diffusions- und Transportproblems auf kompakten Graphen durch die Anwendung von Halbgruppenmethoden untersucht. Eine Verallgemeinerung des indefiniten Operators $-\tfrac{d}{dx}\sgn(x)\tfrac{d}{dx}$ von Intervallen auf metrische Graphen wird eingeführt. Die Spektral- und Streutheorie der selbstadjungierten Realisierungen wird detailliert besprochen. Im zweiten Teil der Arbeit werden Operatoren untersucht, die mit indefiniten Formen der Art $\langle\grad v, A(\cdot)\grad u\rangle$ mit $u,v\in H_0^1(\Omega)\subset L^2(\Omega)$ und $\Omega\subset\R^d$ beschränkt, assoziiert sind. Das Eigenwertverhalten entspricht in Dimension $d=1$ einer verallgemeinerten Weylschen Asymptotik und für $d\geq 2$ werden Abschätzungen an die Eigenwerte bewiesen. Die Frage, wann indefinite Formmethoden für Dimensionen $d\geq 2$ anwendbar sind, bleibt offen und wird diskutiert.
This thesis is devoted to the spectral theory of differential operators on metric graphs and of indefinite differential operators on bounded domains. It consists of two parts. In the first part finite not necessarily compact metric graphs and the Hilbert spaces of square integrable functions on these graphs are considered. All quasi-m-accretive Laplacians on such graphs are characterized and estimates on the negative eigenvalues of self-adjoint Laplacians are derived. Furthermore the well-posedness of a mixed transport and diffusion problem on a compact metric graph is studied in terms of semigroups. The indefinite operator $-\tfrac{d}{dx}\sgn(x)\tfrac{d}{dx}$ is generalized from intervals to finite metric graphs. The spectral and the scattering theory of the self-adjoint realizations are elaborated in detail. In the second part operators are studied that are associated with indefinite quadratic forms of the type $\langle\grad v, A(\cdot)\grad u\rangle$, where $u,v\in H_0^1(\Omega)\subset L^2(\Omega)$ and $\Omega\subset\R^d$ bounded. In dimension $d=1$ the asymptotic distribution of eigenvalues satisfies a generalized Weyl law and for dimension $d\geq2$ estimates on the eigenvalues are derived. The problem when indefinite form methods apply in dimensions $d\geq 2$ constitutes an open problem and is discussed as well.
DDC-Sachgruppe: 510 Mathematik
510 Mathematics
Veröffentlichende Institution: Johannes Gutenberg-Universität Mainz
Organisationseinheit: FB 08 Physik, Mathematik u. Informatik
Veröffentlichungsort: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-1738
URN: urn:nbn:de:hebis:77-35114
Version: Original work
Publikationstyp: Dissertation
Nutzungsrechte: Urheberrechtsschutz
Informationen zu den Nutzungsrechten: https://rightsstatements.org/vocab/InC/1.0/
Umfang: 168 S.
Enthalten in den Sammlungen:JGU-Publikationen

Dateien zu dieser Ressource:
  Datei Beschreibung GrößeFormat
Miniaturbild
3511.pdf1.1 MBAdobe PDFÖffnen/Anzeigen