CO2-induced drastic decharging of dielectric surfaces in aqueous suspensions

ItemZeitschriftenaufsatzOpen Access

Abstract

We study the influence of airborne CO2 on the charge state of carboxylate stabilized polymer latex particles suspended in aqueous electrolytes. We combine conductometric experiments interpreted in terms of Hessinger's conductivity model with Poisson–Boltzmann cell (PBC) model calculations with charge regulation boundary conditions. Without CO2, a minority of the weakly acidic surface groups are dissociated and only a fraction of the total number of counter-ions actually contribute to conductivity. The remaining counter-ions exchange freely with added other ions like Na+, K+ or Cs+. From the PBC-calculations we infer a corresponding pKa of 4.26 as well as a renormalized charge in reasonably good agreement with the number of freely mobile counter-ions. Equilibration of salt- and CO2-free suspensions against ambient air leads to a drastic de-charging, which exceeds by far the expected effects of to dissolved CO2 and its dissociation products. Further, no counter-ion-exchange is observed. To reproduce the experim

Description

Keywords

Citation

Published in

Soft matter, 20, Royal Society of Chemistry, London, 2024, https://doi.org/10.1039/d4sm00957f

Relationships

Collections