Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://doi.org/10.25358/openscience-1028
Autoren: Samol, Sonia
Titel: Effective bounds for the negativity of Shimura curves on Hilbert modular surfaces
Online-Publikationsdatum: 6-Okt-2016
Sprache des Dokuments: Englisch
Zusammenfassung/Abstract: The Bounded Negativity Conjecture states that for each smooth projective surface X defined over a field of characteristic zero there exists a number b(X) bigger or equal to 0 such that the self-intersection number C^2 for every reduced, irreducible curve C in X is bounded below by b(X), i.e. C^2 is bigger or equal to -b(X). In this thesis, we consider Hirzebruch-Zagier curves on Hilbert modular surfaces and give explicit bounds for the self-intersection numbers in these cases. More general, we give a bound for the self-intersection number of reduced, irreducible Shimura curves C on Hilbert modular surfaces X, generalising a result from the literature from compact Hilbert modular surfaces to non-compact Hilbert modular surfaces. We compare the resulting bounds with the actual self-intersection numbers of Hirzebruch-Zagier curves calculated with Pari/GP.
DDC-Sachgruppe: 510 Mathematik
510 Mathematics
Veröffentlichende Institution: Johannes Gutenberg-Universität Mainz
Organisationseinheit: FB 08 Physik, Mathematik u. Informatik
Veröffentlichungsort: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-1028
URN: urn:nbn:de:hebis:77-diss-1000007063
Version: Original work
Publikationstyp: Dissertation
Nutzungsrechte: Urheberrechtsschutz
Informationen zu den Nutzungsrechten: https://rightsstatements.org/vocab/InC/1.0/
Umfang: viii, 82 Seiten
Enthalten in den Sammlungen:JGU-Publikationen

Dateien zu dieser Ressource:
  Datei Beschreibung GrößeFormat
Miniaturbild
100000706.pdf916.45 kBAdobe PDFÖffnen/Anzeigen